Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{AB}{AC}=\frac{5}{2}\Rightarrow2AB=5AC\)
\(\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng ĐL Py-ta-go vào \(\Delta ABC\) vuông tại A
Ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=\left(\frac{5}{2}AC\right)^2+AC^2\)
\(\Rightarrow BC^2=\frac{25}{4}.AC^2+AC^2\)
\(\Rightarrow BC^2=\left(\frac{25}{4}+1\right)AC^2\)
\(\Rightarrow AC^2=BC^2:\left(\frac{25}{4}+1\right)\)
\(\Rightarrow AC^2=26^2:\frac{29}{4}\)
\(\Rightarrow AC^2\approx5,83\)
\(\Rightarrow AC=\sqrt{5,83}\)cm
Lại có: \(AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2\approx676-5,83=670.17\)
\(\Rightarrow AB=\sqrt{670.17}\)cm
Vậy .....
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
Tam giác ABC vuông tại A => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)
\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)
\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)
Vậy AB = 10 (cm); AC = 24 (cm)
Tam giác abc vuông tại b
=>ac là cạnh huyền
=> ac>bc
Nhưng theo gt ac<bc(10<26)
=> Không tồn tại tam giác abc như trên
=> Không tính được ab!!
Mà tên các cạnh phải vt in hoa chứ: AB, BC, AC!!
Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))
Tam giác ABC vuông tại A
Định lí Pytago: \(BC^2=AB^2+AC^2\)
Suy ra \(10^2=6^2+AC^2\)
=> AC= 8 (cm)
Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)