\(a\sqrt{3}\) ;M nằm trên đoạn AC sao cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

a/ \(\overrightarrow{AC}=3\overrightarrow{AM};\overrightarrow{BN}=\frac{1}{2}\overrightarrow{BC}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=\frac{1}{3}\overrightarrow{CA}+\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}\)

\(=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CD}+\overrightarrow{DC}+\frac{1}{2}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{DC}+\frac{1}{6}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{AC}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)

Hmm, MN làm sao vuông góc vs BC đc. Nó chỉ vuông góc khi M là TĐ của AC thôi, bởi N là trung điểm của BC rồi mà, hại não :((

2/\(\overrightarrow{BK}=\frac{4}{13}\overrightarrow{BA}\Rightarrow\overrightarrow{BC}+\overrightarrow{CK}=\frac{4}{13}\overrightarrow{BC}+\frac{4}{13}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CK}=\frac{9}{13}\overrightarrow{CB}+\frac{4}{13}\overrightarrow{CA}\)

\(\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GC}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CN}+\overrightarrow{NM}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+2\overrightarrow{CN}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

Ta có : \(\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CB}\Rightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{18}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BC}+\frac{1}{6}\overrightarrow{CA}+\frac{1}{18}\overrightarrow{CA}\)

\(=\frac{1}{2}\overrightarrow{CB}+\frac{2}{9}\overrightarrow{CA}\)

\(\overrightarrow{CK}=\frac{18}{13}\overrightarrow{CG}\Rightarrow\) C,G,K thẳng hàng

23 tháng 11 2019

cảm ơn bạn

1 tháng 8 2019

Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))

bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\)...
Đọc tiếp

bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a

bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a

bài 3: cho tam giác ABC có AB =4 BC=8 AC=6

a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A

b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)

bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a

0
14 tháng 11 2022

Câu 1:

Gọi E là trung điểm của KC

=>AK=KE=EC

Xét ΔBKC có CM/CB=CE/CK

nên ME//BK

Xét ΔAME có AI/AM=AK/AE

nên IK//ME

=>IK//BK

=>B,I,K thẳng hàng

19 tháng 5 2017

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).