K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o

=> tam giác ABC đồng dạng tam giác HBA( g.g)
 

b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta

7 tháng 4 2017

Mình bổ sung nha:

b) Xét tam giác AHB và tam giác ABC có:

Góc BAC = Góc BHA = 900

Góc B chung

Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)

Suy ra AH/AC = AB/BC

Hay AH/8 = 6/10

Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)

c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:

AB^2= AH^2+BH^2

Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)

Suy ra BH= 3,6 (cm)

Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3

Vậy C ABC/ C HBA = 5/3  

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA=AC/HA=10/6=5/3

c: AH=4,8cm

BH=3,6cm

25 tháng 4 2023

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

25 tháng 4 2023

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.

a: XétΔABC vuông tại A và ΔHBA vuông tại H có 

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)

nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)

9 tháng 4 2022

cảm ơn nha

 

23 tháng 3 2022

a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)

9 tháng 5 2017

a)

Xét \(\Delta ABC\)và  \(\Delta HBA\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HBA\)

\(\RightarrowĐpcm\)

9 tháng 5 2017

b)

Xét \(\Delta ABC\) và  \(\Delta HAC\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HAC\)

\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)

Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)

\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.