Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 3cm 4cm I M
Tam giác ABC vuông tại A => BC2 = AB2 + AC2 ( Theo định lý pitago )
=> BC2 = 32 + 42 = 9 + 16 = 25 = 52
=> BC = 5 (cm)
Tam giác IBC có IB = IC => Góc IBM = Góc ICM (định lý)
Xét tam giác BIM và tam giác CIM có :
IB = IC (gt)
Góc IBM = Góc ICM (cm trên)
Góc BMI = Góc IMC = 900 (gt)
=> tam giác BIM = tam giác CIM (CH - GN)
=> BM = MC (góc tương ứng)\
Mà BM + MC = BC = 5(cm)
=> BM + BM = 5 <=> 2BM = 5 => BM = 2,5 (cm)
Vậy BM = 2,5 (cm)
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
A B C H
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
A B C M I J K
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
a. Áp dụng định lí Py-ta-go vào tam giác vuông ABC có ;
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=3^2+4^2\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5cm\)
Vậy BC = 5cm
b.Xét hai \(\Delta\)vuông AMD và \(\Delta\)vuông AMI có
\(\widehat{AMD}=\widehat{AMI}=90^O\)
cạnh AM chung
MD = MI [ gt ]
Do đó ; \(\Delta AMD=\Delta AMI\)[ cạnh góc vuông - cạnh góc vuông ]
c.Vì MI = MD mà BM\(\perp\)ID nên
B thuộc đường trung trực của đoạn thẳng ID
\(\Rightarrow\)BI = BD
Vậy B cách đều 2 cạnh góc IAD
#)Góp ý :
Bạn tham khảo nhé ^^
Xét tam giác ABC vuông tại A :
BC2 = AB2 + AC2 (định lý Py-ta-go)
=> BC2 = 32 + 42 = 9 + 16 = 25
=> BC = 5 cm
Ta có : IB = IC (I cách đều 3 cạnh của tam giác ABC)
=> Tam giác IBC cân tại I
=> Góc IBM = góc ICM
Xét tam giác BIM và tam giác CIM có :
Góc BMI = góc CMI (= 90 độ)
IB = IC (cmt)
Góc IBM = góc ICM (cmt)
==> Tam giác BIM = tam giác CIM (cạnh huyền - góc nhọn)
=> BM = CM (2 cạnh tương ứng)
mà BM + CM = BC = 5 cm
Nguồn : Câu hỏi của Nguyen Ngoc Anh Linh - Toán lớp 7 | Học trực tuyến
Link : https://h.vn/hoi-dap/question/567650.html