K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.

Kẻ AH vuông góc BC tại H. 

A B C H

Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.

Vậy thì \(BH=HC=1,5cm\)

Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\)

\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)

Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\)   (1)

A B C M I J K

Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)

\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\)   (cm2)     (2)

Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\) 

29 tháng 5 2021

A B C M I J K H

Kẻ đường cao AH của tam giác ABC, ta có:

\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)

Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)

Dấu "=" xảy ra <=> M là trung điểm AH.

14 tháng 7 2019

#)Góp ý :

Bạn tham khảo nhé ^^

Xét tam giác ABC vuông tại A :

BC2 = AB2 + AC2 (định lý Py-ta-go)

=> BC2 = 32 + 42 = 9 + 16 = 25

=> BC = 5 cm

Ta có : IB = IC (I cách đều 3 cạnh của tam giác ABC)

=> Tam giác IBC cân tại I

=> Góc IBM = góc ICM

Xét tam giác BIM và tam giác CIM có :

Góc BMI = góc CMI (= 90 độ)

IB = IC (cmt)

Góc IBM = góc ICM (cmt)

==> Tam giác BIM = tam giác CIM (cạnh huyền - góc nhọn)

=> BM = CM (2 cạnh tương ứng)

mà BM + CM = BC = 5 cm

Nguồn : Câu hỏi của Nguyen Ngoc Anh Linh - Toán lớp 7 | Học trực tuyến 

Link : https://h.vn/hoi-dap/question/567650.html

10 tháng 3 2017

A B C 3cm 4cm I M

Tam giác ABC vuông tại A => BC2 = AB2 + AC2 ( Theo định lý pitago )

=> BC2 = 32 + 42 = 9 + 16 = 25 = 52

=> BC = 5 (cm)

Tam giác IBC có IB = IC => Góc IBM = Góc ICM (định lý)

Xét tam giác BIM và tam giác CIM có :

IB = IC (gt)

Góc IBM = Góc ICM (cm trên)

Góc BMI = Góc IMC = 900 (gt)

=> tam giác BIM = tam giác CIM (CH - GN)

=> BM = MC (góc tương ứng)\

Mà BM + MC = BC = 5(cm)

=> BM + BM = 5 <=> 2BM = 5 => BM = 2,5 (cm)

Vậy BM = 2,5 (cm)

sai rồi. 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc AMB=góc AMC=1/2*180=90 độ

BM=CM=30/2=15cm

AM=căn 17^2-15^2=8cm

c: góc BAC=180-2*30=120 độ

=>góc IMK=60 độ

Xét ΔAIM vuông tại I và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>MI=MK

mà góc IMK=60 độ

nên ΔIMK đều