Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BC=\sqrt{625}=25\)cm
\(\Delta ABC\)có \(BD\)là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{AD}{AB}=\frac{DC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)
suy ra: \(\frac{AD}{AB}=\frac{1}{2}\) \(\Rightarrow\)\(AD=\frac{1}{2}AB=7,5\)
b) Xét \(\Delta AHB\)và \(\Delta CAB\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABH}\) CHUNG
suy ra: \(\Delta AHB~\Delta CAB\) (g,g)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15\left(cm\right)\)
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\);
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Do \(\Delta AHB\sim\Delta CAB\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
c) Xét \(\Delta BAD\) và \(\Delta BHK\) có:
\(\widehat{BAD}=\widehat{BHK}=90^0\)
\(\widehat{ABD}=\widehat{HBK}\) (tính chất phân giác)
\(\Rightarrow\Delta BAD\sim\Delta BHK\left(g.g\right)\Rightarrow\dfrac{BA}{BD}=\dfrac{BH}{BK}\Rightarrow BA.BK=BH.BD\)