K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDCE vuông tại D và ΔDFB vuông tại D có 

\(\widehat{DCE}=\widehat{DFB}\)

Do đó: ΔDCE\(\sim\)ΔDFB

Suy ra: DC/DF=DE/DB

hay \(DC\cdot DB=DF\cdot DE\)

b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)

27 tháng 3 2018

a)  Xét  \(\Delta BDF\)và     \(\Delta EDC\) có:

\(\widehat{BDF}=\widehat{EDC}=90^0\)

\(\widehat{BFD}=\widehat{ECD}\)  (DO CÙNG PHỤ VỚI GÓC   ABC  )

Suy ra:   \(\Delta BDF~\Delta EDC\)

\(\Rightarrow\)\(\frac{BD}{ED}=\frac{DF}{DC}\)

\(\Rightarrow\)\(BD.DC=ED.FD\)

27 tháng 3 2018

Vẽ hình hộ mk vs

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)

 

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm

10 tháng 2 2018

kho ua

a: Xet ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH vuông góc BC

nên BA^2=BH*BC

\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE

Xét ΔCEB có KH//EB

nên KH/EB=CK/CE=KD/AE
mà AE=EB

nên KH=KD