K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Ta có hình vẽ sau:

 

A B C D M 1 2

GT: ΔABC ; \(\widehat{A}\) = 90o

MB = MC ; MA = MD

KL: a) ΔAMB = DMC

a) Xét ΔAMB và ΔDMC có:

MA = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)

MB = MC (gt)

\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)

 

24 tháng 10 2016

ý b vs ý c mk chua nghĩ ra

hỳ

20 tháng 12 2018

A B C M D

Vì M là trung điểm của AD 

=> BM = DM 

AM = CM 

Xét tam giác AMB và tam giác DMC có :

BM = DM ( cmt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

AM = CM ( cmt )

=> Tam giác AMB = tam giác DMC ( c-g-c )

b) Vì tam giác AMB = tam giác DMC ( cmt )

 \(\Rightarrow\widehat{BAM}=\widehat{MDC}\) ( 2 góc tương ứng )

Mà 2 góc này lại ở vị trí so le trong 

=> BA // DC 

Vì \(BA\perp DC\)

\(\Rightarrow DC\perp AC\)

c) Xét tam giác ADM và tam giác DCM có :

BA = DC ( cmt )

\(\widehat{BAC}=\widehat{DCA}=90^o\)

DM cạnh chung

=> tam giác ADM = tam giác DCM ( c-g-c )

\(\Rightarrow AD=BC\)

\(\Rightarrow2AM=BC\)

\(AM=\frac{1}{2}BC\)

\(\Rightarrowđpcm\)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

2 tháng 1 2019

a) Chứng minh tam giac AMB = tam giac DMC

Xét tam giác MAB và tam giác MDC, có

- MA = MD (M là trung điểm AD)

- MB = MD (M là trung điểm BD) 

- Góc M đối nhau

=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh)  (đpcm)

b) Chứng minh DC vuông góc AC

Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)

=> góc A1 + góc A2 = 90 độ

mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)

=> góc ADC + góc A2 = 90 độ

Xét tam giác CAD,

có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ

=> góc ACD = 90 độ

=> tam giác DAC vuông tại C

Ta có DC vuông góc AC tại C

và BA vuông góc AC tại A

=> BA // DC (đpcm)

c) AM = 1/2BC

Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)

Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:

Xét tứ giác ABDC có:

- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)

- DC // BA

=> tứ giác ABDC là hình bình hành

và có góc A vuông

=> tứ giác ABDC là hình chữ nhật

=> 2 đường chéo của hình chữ nhật là AD = BC

mà M là trung điểm của AD và BC

=> AM = 1/2 BC (đpcm)

4 tháng 12 2016

Bạn tự vẽ hình nha:

vẽ như đề bài yêu cầu xogn rồi nối D vs C

Xét tam giác AMB và tam giác DMC có:

BM=CM    (gt)

góc BMC = góc DMC

AM=DM    (gt)

=> tam giác AMB= tam giác DMC (c.g.c)

b,Từ câu a

=> góc BAM=góc MDC (2 góc tương ứng)

Mà 2 góc trên nằm ở vị trí so le trong

=> BA song song với DC

Vì BA vuông góc với AC

=> DC vuông góc với AC

=> DPCM

c,Từ câu a

=> BA=DC

Xét tam giác ABM và tam giác DCM có:

BA=DC

góc BAC= góc DCA=90 độ

AC: cạnh chung

=> tam giác ABM= tam giác DCM (c.g.c)

=> AD=BC

=> 2AM=BC

=> AM=1/2BC

=> DPCM

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy

12 tháng 12 2016

a)Chứng minh tam giác AMC = tam giác DMB?

Xét tam giác AMC và tam giác DMB có:

- Góc BMD = góc AMC (đối đỉnh)

-BM = MC (gt)

-MA = MD (gt)

=> Tam giác AMC = tam giác DMB(g.c.g)

b)Chứng minh AC = BD?

Ta có: tam giác AMC = tam giác DMB (cmt)

=>BD=AC

c)Chứng minh AB vuông góc với BD?

Xét tam giác AMC và tam giác DMB có:

-Góc DMB = góc ABC (so le trong)

=>BD//AC

Mà AB vuông góc với AC

=> AB vuông góc với BD

d) Chứng minh AM=1/2 BC?

Xát tam giác ABC vuông tại A có:

M là trung điểm của BC(gt)

=>AM là đường trung tuyến

=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)

12 tháng 12 2016

ai giúp vs

 

 

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ