K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

a, Xét \(\Delta ADC\)\(\Delta ABC\) có:

\(AD=BC\left(gt\right)\)

\(\widehat{A1}=\widehat{C1}\) (So le trong ; \(AD//BC\) )

\(AC\) là cạnh chung

\(\Rightarrow\Delta ADC=\Delta ABC\left(c-g-c\right)\)

b,Ta có: \(\Delta ADC=\Delta ABC\left(cmt\right)\)

\(\Rightarrow\widehat{C2}=\widehat{A2}\) (2 góc tương ứng) và \(CD=AB\) (2 cạnh tương ứng)

\(\Rightarrow AB//CD\left(đpcm\right)\)

Xét \(\Delta ABD\)\(\Delta CBD\) có:

\(CD=AB\left(cmt\right)\)

\(AD=CB\left(cmt\right)\)

\(BD\) là cạnh chung

\(\Rightarrow\Delta ABD=\Delta CBD\left(c-c-c\right)\left(đpcm\right)\)

17 tháng 11 2019

Hình nè bạn.Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

18 tháng 2 2020

P/S 3 chữ hoa liên tiếp là góc :D

a,Ta có :\(AD//BC=>DAC=BCA\)

Xét Tam giác ABC và tam giác CDA

\(BC=DA\)(gt)

\(BCA=DAC\)(cmt)

\(CA\)cạnh chung

\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)

b,Ta có : \(AD//BC=>ADB=CBD\)

Xét tam giác ABD và tam giác CDB

\(BC=AD\)(gt)

\(ADB=CBD\)(cmt)

\(BD\)cạnh chung

\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)

c,Xét tam giác ODA và tam giác OBC

\(DBC=BDA\)(cm câu b)

\(AD=BC\)(gt)

\(DAC=ACB\)(cm câu a)

\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)

D C A H B

a) Xét \(\Delta ABH\)có:

\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)

hay \(\widehat{BAH}+60^o+90^o=180^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:

\(AB=CD\left(gt\right)\)

\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)

\(AC\)cạnh chung

\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)

c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)

Mà 2 góc này nằm ở vị trí slt

\(\Rightarrow AD//BC\)

\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)

Mà \(\widehat{AHB}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{HAD}=90^o\)

Hay nói cách AD vuông góc AH( đpcm)

học tốt!!

3 tháng 11 2021

hum

 

17 tháng 4 2020

a) Vì \(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

b) Do \(AB//CD\Rightarrow\widehat{BAC}=\widehat{ACD}\)(2 góc so le trong)

\(\Rightarrow\Delta ABC=\Delta CDA\left(cgc\right)\)\(\hept{\begin{cases}AB=CD\\\widehat{BAC}=\widehat{ACD}\\ACchung\end{cases}}\)

c) Vì \(\Delta ABC=\Delta CDA\Rightarrow\widehat{ACB}=\widehat{CAD}\)(2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong của 2 đường thẳng AD và BC\(\Rightarrow AD//BC\)

Ta có \(AD//BC,AH\perp BC\Rightarrow AD\perp AH\)

13 tháng 12 2020

mình thấy mọi người toàn hỏi hình học nhỉ

2 tháng 12 2015

a, Xet tam giac AOB va tam giac COD co:

OA = OC (O la trung diem AC)

OB = OD (gt)

goc BOA = goc DOC (doi dinh)

suy ra tam giac BOA = tam giac DOC (c.g.c)

suy ra canh AB = canh CD (1), goc BAC = goc ODC (2)

b, xet tam giac ABC va tam giac CDA co:

AB = CD

goc BAC = goc ACD

AC chung

suy ra tam giac ABC = tam giac CDA (c.g.c)

suy ra BC = AD

c, xet tam giac ABD va tam giac BCD co:

AB = CD

BC = AD

BD chung

suy ra tam giac ABD = tam giac CDB (c.c.c)

d, ta co goc BAC = goc ACD (phan a)

Ma hai goc nay o vi tri so le trong bang nhau nen AB// CD.

Lai co goc CBD = goc ADB (phan c)

Ma hai goc nay o vi tri so le trong bang nhau nen BC//AD.

 

18 tháng 11 2016

1) Ta có hình vẽ sau:


A B C D 1 2 1 2

Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)

AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)

Xét ΔABC và ΔCDA có:

\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)

AC: Cạnh chung

\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)

\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)

2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)

\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)

3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!

Ta có hình vẽ sau:

A B C F E 1 2

Xét ΔABC và ΔAFE có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)

18 tháng 11 2016

Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha