Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có DE//BC
nên AD/AB=DE/BC
=>DE/10=3/5
hay DE=6(cm)
b: Xét ΔADE và ΔCGE có
\(\widehat{ADE}=\widehat{CGE}\)
\(\widehat{AED}=\widehat{CEG}\)
Do đó: ΔADE\(\sim\)ΔCGE
Suy ra: AD/CG=AE/CE
hay \(AD\cdot CE=AE\cdot CG\)
a: Xét ΔACB và ΔCEK có
góc ACB=góc CEK(=góc AED)
góc BAC=góc KCE
=>ΔACB đồng dạng với ΔCEK
b: Xét ΔHEK và ΔHCB có
góc HEK=góc HCB
góc EHK=góc CHB
=>ΔHEK đồng dạng với ΔHCB
=>EK/CB=HE/HC
=>EK*HC=CB*HE
Sửa đề: DE//BC
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
DE//BC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)(Hệ quả của Định lí ta lét)
\(\Leftrightarrow\dfrac{3}{5}=\dfrac{DE}{10}\)
hay DE=6(cm)
Vậy: DE=6cm
Xét ΔABC có DE//BC
nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=2\cdot\dfrac{8}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
=>AE/4=1/3
hay AE=4/3(cm)
b: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
hay \(AD\cdot AC=AE\cdot AB\)
a: Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=3/5
=>DE=6cm
b: Xét ΔADE và ΔCGE có
góc AED=góc CEG
góc EAD=góc ECG
=>ΔADE đồng dạng với ΔCGE
c: Xét tứ giác DBCG có
DG//BC
DB//CG
=>DBCG là hình bình hành
=>DB=CG