Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D M N P
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
A B C G D E t z m n P Q
a, kẻ DC
xét tam giác BDC và tam giác ECD có : DC chung
BD = CE (Gt)
^BDC = ^CDE (slt; BD // CE)
=> tam giác BDC = tam giác ECD (c-g-c)
=> BC = DE (1)
và ^BCD = ^CDE (đn) mà 2 góc này slt
=> DE // BC
gọi En cắt BC tại P => ^DEP = ^BPG (đồng vị)
có ^BPG = ^ACB (đồng vị) do En // AC (Gt)
=> ^DEG = ^BCA (2)
gọi Dm cắt BC tại Q; DE // BC (cmt)
=> ^EDG = ^CQG (đồng vị)
^GQP = ^ABC (đồng vị) Dm // AB (Gt)
=> ^EDG = ^ABC (3)
(1)(2)(3) => tam giác ABC = tam giác GDE (c-g-c)
b, kẻ AE
tam giác ABC = tam giác GDE (Câu a) => GE = AC (đn)
xét tam giác AGE và tam giác ECA có : AE chung
^GEA = ^EAC (slt) GE // AC (gT)
=> tam giác AGE = tam giác ECA (c-g-c)
=> ^GAE = ^AEC mà 2 góc này slt
=> AG // CE (đl)
a/ ta có M= <ACD ( cùng phụ với <ADC)
mà <M+ < MEA= 90
<ACD+ <ADC= 90
suy ra : <MEA=<ADC
xét tam giác MEA và ACD :
<MEA=<ADC(cmt)
AE=AD
2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
A B C D E M N
Tham khảo lời giải của cô Huyền ở đây nha: Câu hỏi của Pé Moon - Toán lớp 7
Mà hình như cô nhầm khúc cuối đó, mình nghĩ là "DM = PC(2)"