K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NH
14 tháng 2 2020
ABCNM
a ) Xét tam giác AMB và tam giác NMC có :
AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )
BM = MC ( vì AM là đường trung tuyến của BC )
=> Tam giác AMB = Tam giác NMC ( c.g.c )
=> Góc ABM = góc NCM ( 2 góc tương ứng )
Mà góc ABM = góc NCM so le trong
=> CN // AB
b ) Xét tam giác ABC và tam giác NCB có :
AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )
Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )
AB là cạnh chung
=> Tam giác ABC = Tam giác NCB ( c.g.c )
26 tháng 1 2017
câu a theo mk thì bạn nên chứng minh 2 tam giác đồng dạng: tam giác ABM và tam giác MNC
A B C D E O H M F P Q 1 1 K 1 1
1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE
Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)
=> CD=BE (2 cạnh tương ứng)
Gọi CD giao BE tại P, AB giao CD tại Q
Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)
Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1
=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.
2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.
Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD
=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC
=> ^BAC+^ACF=1800. (1)
Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)
Từ (1) và (2) => ^ACF=^EAD.
Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)
=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.
3) Gọi AM cắt DE tại K
Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.
Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.
4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.
Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)
=> AM=EO (2 cạnh tương ứng).
Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay là trung điểm của DE (đpcm).
Cảm ơn nhé!