Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Xét (O) có
ΔADE nội tiếp
AE là đường kính
Do đó: ΔADE vuông tại D
=>AD\(\perp\)DE tại D
AD\(\perp\)DE
AD\(\perp\)BC
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Xét (O) có B,D,E,C cùng thuộc (O)
nên BDEC là tứ giác nội tiếp
=>\(\widehat{BDE}+\widehat{BCE}=180^0\)
mà \(\widehat{BDE}+\widehat{CBD}=180^0\)(DE//BC)
nên \(\widehat{BCE}=\widehat{CBD}\)
Xét hình thang DECB có \(\widehat{BCE}=\widehat{CBD}\)
nên DECB là hình thang cân
b: M là điểm chính giữa của cung DE nên MD=ME
=>M nằm trên đường trung trực của DE(1)
OD=OE
=>O nằm trên đường trung trực của DE(2)
Từ (1) và (2) suy ra OM là đường trung trực của DE
=>OM\(\perp\)DE
mà DE//BC
nên OM\(\perp\)BC tại I
ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
NB^2=NK*NM
=>NB là tiếp tuyến của đường tròn ngoại tiếp ΔMBK
=>NB vuông góc PB
góc DBN=90 độ
=>DB vuông góc NB
=>P,B,D thẳng hàng
Chứng minh tương tự, ta được: C,Q,K thẳng hàng
ΔKPB cân tại P, ΔDBC cân tại D
=>PK//QD
Chứng minh tương tự, ta được: QK//DB
=>DPKQ là hình bình hành
=>DK cắt PQ tại trung điểm của mỗi đường
=>E,D,K thẳng hàng
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
c: G là trọng tâm
nên AG=2AI
Xét ΔAHD có
AI là trung tuyến
AG=2/3AI
DO đó: G là trọng tâm