K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Dễ thấy H là trực tâm của tam giác ABC.
a) Bỏ qua
b) Gọi T là trung điểm của HC.
Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.
TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra MT // ON.
Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).
Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).
Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).
c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.