K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Tự thay điểm P bằng điểm K theo đầu bài của bạn

 Nối H với N và P với M.

HM thuộc BC => HM // PN => tứ giác MNPH là hình thang

Xét tam giác ABC có:

 AP = PB

 BM = MC .

=> PM là đường trung bình của tam giác ABC => PM = \(\frac{1}{2}\)AC  (3)

 - Tam giác AHC vuông tại H có HN là đg trung tuyến ứng với cạnh huyền AC 

=> HN =\(\frac{1}{2}\) AC  (4)

Từ (3) và (4) => PM = HN (vì cùng = \(\frac{1}{2}\) AC)

Hình thang MNPH có PM = HN => MNPH là hình thang cân (dấu hiệu)

28 tháng 10 2021

có chứ sao ko hihi

29 tháng 10 2021

có chứ

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$

$\Rightarrow MNPH$ là hình thang $(*)$

Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)

$\Rightarrow $MHB$ cân tại $M$

$\Rightarrow \widehat{MHB}=\widehat{MBH}$

Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)

$\Rightarrow \widehat{MHB}=\widehat{NPC}$

$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$

Hay $\widehat{MHP}=\widehat{NPH}(**)$

Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Hình vẽ: 

13 tháng 9 2023

- Vì \(M\) là trung điểm của \(AB;N\) là trung điểm của \(AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\). Do đó, \(MN//BC\) (tính chất đường trung bình).

\( \Rightarrow MN//HP\left( {H;P \in BC} \right)\)

Xét tứ giác \(MNPH\) có: \(MN//HP \Rightarrow \) tứ giác \(MNPH\) là hình thang.

- Vì \(M\) là trung điểm của \(AB;P\) là trung điểm của \(AC\) nên \(MP\) là đường trung bình của tam giác \(ABC\). Do đó, \(MP = \frac{1}{2}AC\) (tính chất đường trung bình) (1).

- Xét tam giác \(AHC\) vuông tại \(H\) có:

\(N\)là trung điểm của \(AC\) nên \(HN = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông) (2).

Từ (1) và (2) suy ra \(MP = HN\).

Xét hình thang \(MNPH\) có: \(MP = HN\) (chứng minh trên).

Do đó, hình thang \(MNPH\) là hình thang cân (dấu hiệu nhận biết hình thang cân).

6 tháng 7 2018

tích đúng mình làm cho

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.