Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyen thi bao tien - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo cách làm tương tự nhé!
Kẻ đường cao BH \(\Rightarrow AH=AB.cosA\)
Theo Pitago: \(AB^2=AH^2+BH^2\)
Và: \(BC^2=BH^2+CH^2=BH^2+\left(AC-AH\right)^2\)
\(=BH^2+AC^2-2AC.AH+AH^2\)
\(=AB^2+AC^2-2AC.AH\)
\(=AB^2+AC^2-2AC.AB.cosA\)
a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)
\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)
\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)
\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)
\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)
b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)
\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)
\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)
\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)
a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b: