Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác CEAM có
N là trung điểm chung của CA vàEM
nên CEAM là hình bình hành
Suy ra: CE//AM và CE=AM
b: Xét ΔABC có
M là trung điểmc ủa AB
N la trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
tự kẻ hình nha
a) xét tam giác AMN và tam gáic CEN có
AN=NC(gt)
MN=NE(gt)
ANM=CNE( đối đỉnh)
=> tam giác AMN= tam giác CEN(cgc)
=> AM=CE(hai cạnh tương ứng) mà AM=MB=> MB=CE
=> CEN=AMN(hai góc tương ứng)
mà CEN so le trong với AMN mà A,M,B thẳng hàng=> MB//CE
c) từ MB//CE=> BMC=MCE( so le trong)
xét tam giác BMC và tam gíac ECM có
MC chung
BMC=MCE(cmt)
MB=CE(cmt)
=> tam gíac BMC= tam giác ECM(ccg)
d) từ tam giác BMC= tam giác CEM=> BCM=EMC( hai góc tương ứng), ME=BC( hai cạnh tương ứng)
mà BCM so le trong với EMC=> MN//BC
vì MN=NE mà ME=BC(cmt)
=> BC=2MN=> MN=1/2BC
A B C N M E
a) Xét tứ giác AMCE có
Hai đường chéo AC và ME cắt nhau tại N là trung điểm của mỗi đường
> Tứ giác AMCE là hình bình hành
=> CE = AM, CE // AM
b) Vì CE = AM mà AM = MB
=> EC = BM
C) Xét tam giác ABC có
AM = MB; AN = NC
=> MN là đường trung bình của tam giác ABC
=> MN = 1/2BC; MN // BC