Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M H K
xét tam giác AMB và tam giác CMD có
AM = MC (gt)
góc AMB = góc CMD ( đối đỉnh )
BM = MD (gt)
do đó tam giác AMB = tam giác CMD (c.g.c)
A B C M D K H E F
FE là nét đứt nha.
a) Có M là trung điểm của AC (gt) => AM = CM = 1/2 AC
Xét ΔAMB và ΔCMD có:
AM = CM (cmt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
MB = MD (gt)
=> ΔAMB = ΔCMD (c.g.c)
b) Có ΔAMB = ACMD (cmt)
=> AB = CD (hai cạnh tương ứng)
\(\widehat{ABM}=\widehat{CDM}\) (hai góc tương ứng)
Xét ΔAKB và ΔCHD có:
\(\widehat{AKB}=\widehat{CHD}=90^o\) (gt)
AB = CD (cmt)
\(\widehat{ABK}=\widehat{CDH}\) (cmt)
=> ΔAKB = ΔCHD (ch - gn)
=> AK = CH (hai cạnh tương ứng)
A, c/m :tgABC=tgCDA
Xét 2tg:ABC va CDA
Co : AC : canh chunh
BM=MD (gt)
BF=ED (gt)
=>tgABC=tgCDA(ccc)
b,C/M AF _|_ BC
Có: tgABC=tgCDA (cmt)(ccc)
Ma AF//CE (Vi : vuong goc tai F va E )
Va:A1=C2(slt)
Va:A2=C1(slt)
=> AF//CE
vỚI : AD//BC
Vì:ED=BF(gt)
E=F(vuog goc)
=> AD//BC
Vậy AF _|_ BC (Vi:CE_|_ AD)
C, KO BT LAM **** NHE
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD