Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác DCM có
AB=CD( gt)
góc ABM= góc DCM ( 2 góc so le trong do AB//Cx)
BM=CM ( M là trung điểm của BC)
=> tam giác ABM = tam giác DCM ( c-g-c)
=> MA = MD ( 2 cạnh tương ứng)
vậy MA=MD
b) Có tam giác ABM = tam giác DCM (cmt)
=> góc AMB =góc DMC( 2 góc tương ứng)
mà góc AMB + góc AMC = 180độ(2 góc kề bù)
=> góc DMC + góc AMC = 180độ
hay góc AMD =180 độ
=> A,M,D thẳng hàng
Vậy 3 điểm A,M,D thẳng hàng
Bài 1.
Xét Δ ABC và Δ DEC có:
+ BC = EC (gt)
+ C1ˆ=C2ˆC1^=C2^ (đối đỉnh)
+ AC = DC (gt)
=> Δ ABC = Δ DEC (c-g-c)
=> BACˆ=EDCˆBAC^=EDC^ (2 góc tương ứng)
Mà BACˆ=90oBAC^=90o
=> EDCˆ=90o
A B C M x D 1 2 1 2 3
a ) Vì Cx // AB => \(\widehat{ABC}=\widehat{C_2}\left(SLT\right)\)
Xét \(\Delta AMB\) và \(\Delta DMC\) có :
MB = MC (gt)
\(\widehat{ABC}=\widehat{C_2}\left(cmt\right)\)
AB = CD (gt)
=> \(\Delta AMB\) = \(\Delta DMC\) (c - g - c)
=> MA = MD (T/Ư)
b ) Vì \(\Delta AMB\) = \(\Delta DMC\) => \(\widehat{M_1}=\widehat{M_3}\) (T/Ư) (1)
Ta lại có : \(\widehat{M_1}+\widehat{M_2}=180^0\)(kề bù) ; kết hợp với (1) => \(\widehat{M_2}+\widehat{M_3}=180^0\)
Hay \(\widehat{AMD}=180^0\) => \(A;D;M\) thẳng hàng
a. Ta có Cx // AB (gt) => góc ABC = góc DCB (so le trong)
M là trung điểm của cạnh BC (gt) nên BM=CM (t/c)
Xét tam giác ABM và tam giác CMD có :
- CD = AB (gt)
- BM=CM (cmt)
- góc ABC = góc DCB (cmt)
=> Tam giác ABM = tam giác CMD (c.g.c)
=> MA = MD (t/c)
b. Ta có tam giác ABM = tam giác CMD (c.g.c)
=> góc AMB = góc DMC (t/c)
Mà góc AMB + góc AMC = 180 độ (kề bù)
nên góc CMA + góc CMD = 180 độ
=> Ba điểm A,M,D thẳng hàng