K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

a) Kéo dài MP, NP lần lượt cắt BC tại E, D. 

Xét tam giác ABC có ME // AC \(\Rightarrow\)\(\frac{AM}{AB}\)\(\frac{CE}{BC}\)(1)

Xét tam giác ABC có ND // AB \(\Rightarrow\)\(\frac{AN}{AC}\)\(\frac{BD}{BC}\)(2)

Xét tam giác ABQ có PD//AB \(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}\)

Xét tam giấc ACQ có PE//AC\(\Rightarrow\frac{PQ}{AQ}=\frac{QE}{QC}\)

\(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}=\frac{QE}{QC}=\frac{DQ+QE}{BQ+QC}=\frac{DE}{BC}\)(3)

Từ (1), (2), (3) suy ra \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=\frac{CE}{BC}+\frac{DB}{BC}+\frac{DE}{BC}=1\)(đpcm)

15 tháng 10 2017

9 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [E, M] Đoạn thẳng l: Đoạn thẳng [F, M] A = (-1.14, 6.85) A = (-1.14, 6.85) A = (-1.14, 6.85) B = (-3.22, 3.05) B = (-3.22, 3.05) B = (-3.22, 3.05) C = (4.24, 2.98) C = (4.24, 2.98) C = (4.24, 2.98) Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h

a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)

Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.

b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)

\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)

c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)

\(=2ab\le a^2+b^2\)

Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.

21 tháng 8 2017

a) Chứng minh được MN//PQ (cùng vuông góc với AC). Chứng minh được MP = QN. Þ ĐPCM.

b) Ta có:

S M N E = 1 2 S M E N C , S N P E = 1 2 S P B N E , S P Q E = 1 2 S , A P E Q S M Q E = 1 2 S Q E M D ⇒ S M N P Q = 1 2 S A B C S .  

c) Chu vi MNPQ = MN + PQ + NP  + QM

= EC + AE + BE + ED = AC + BE + ED.

Trong tam giác BED, BE + ED ³ BD

Þ Chu vi MNPQ ≥ AC + BD

Þ E là tâm của hình vuông ABCD