K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

a) vì DNBI là hbh => DN = BI

cmtt NE = KC 

mà DN = NE 

=> BI = KC(1)

ta có KC song song vs NE ( hbh) , BI song song vs DN  (hbh) mà DN và NE thg hàng => BI song song vs KC (2)

Từ 1 và 2 => BIKC là hbh

ta có BC là đg chéo của hbh BIKC mà M là tđ của BC

=> đg chéo IK đi qua trung điểm M của BC => M , I , K thg hàng

12 tháng 11 2016

Bạn thùy dung chưa đọc kĩ đề bài ' đoạn BD mà '

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
30 tháng 6 2017

Hình thoi

Áp dụng định lí về đường trung bình của tam giác để chứng minh MI = IN = NK = KM (cùng bằng \(\dfrac{BD}{2}\)\(\dfrac{CE}{2}\) )

MINK là hình thoi nên \(IK\perp MN\)

9 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Trong BCD,ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của  ∆ BCD

⇒ NK // BD và NK = 1/2 BD (1)

*Trong  ∆ BED,ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của  ∆ BED

⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

Nên tứ giác MKNI là hình bình hành.

*Trong ∆ BEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).