Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình.
a) \(\Delta BMF=\Delta AMC\left(c-g-c\right)\)
\(\Rightarrow\widehat{F}=\widehat{MAC}\)
<=> BF//AC
\(\Leftrightarrow\widehat{ABF}+\widehat{BAC}=180^o\)(trong cùng phía)
Mà \(\widehat{ABC}+\widehat{DAB}+\widehat{EAC}+\widehat{DAE}=360^o\)
\(\Leftrightarrow\widehat{ABC}+\widehat{DAE}=180^o\)
\(\Leftrightarrow\widehat{ABF}=\widehat{DAE}\)
b) \(\Delta DAE=\Delta ABF\left(c-g-c\right)\)
\(\Leftrightarrow DE=AF\)
Mà \(AF=2AM\)
\(\Leftrightarrow DE=2AM\)
A B C M D
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.