Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{xAC}=\widehat{ACD}\)(so le trong, Ax//CD)
mà \(\widehat{xAC}=\widehat{xAB}\)
và \(\widehat{xAB}=\widehat{ADC}\)
nên \(\widehat{xAB}=\widehat{ACD}=\widehat{ADC}\)
a) Vì ax là tia phân giác của góc bac nên bax=xac(1)
Vì ax//cd => xac và dca là hai góc so le trong=>xac=acd (2)
Vì bax và adc là hai góc đồng vị =>bax=adc(3)
Từ (1), (2) và (3) => xab=adc=acd (đpcm)
Xin lỗi vì chỉ mới làm đc câu a nhé =))
Ta có: \(Ax//CD\)
\(\Rightarrow\widehat{CAx}=\widehat{ACD}\) (T/chất góc so le trong)
Mà: \(\widehat{BAx}=\widehat{CAx}\)
\(\Rightarrow\widehat{BAx}=\widehat{ACD}\) (đồng vị)
\(\Rightarrow\widehat{ADC}=\widehat{ACD}\)
Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
80 + 50 + góc C = 180
=> góc C = 180 -80 -50 = 50
Ta có: góc BAC + góc CAx = 180 ( kề bù )
80 + góc Cax = 180
=> Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx
=> góc CAy = Góc CAx / 2 =100/2 = 50
Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
Suy ra Ay // BC ( đpcm)
Ta có: Ax // CD
=> CAx^ = ACD^ (sole trong)
Mà BAx^ = CAx^
=> BAx^ = ACD^
=> ADC^ = BAx^ (đồng vị)
vậy BAx^ = ACD^ = ADC^
vẽ hộ mình hình được không bạn ?