K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016


A B C M K

Trên tia đối của tia MA, lấy K sao cho MK = MA

Trong tam giác AKC, AK < KC + AC (1)

Do AM = MK => M là trung điểm AK => AM = MK = AK/2 => 2AM = 2MK = AK (2)

Xét tam giác ABM = tam giác KCM (c-g-c) => KC = AB (3)

Từ (1); (2) và (3) => 2AM < AB + AC => AM < (AB + AC)/2

21 tháng 2 2020

B D M A C

Áp dụng bất đẳng thức tam giác với hai tam giác AMB và AMC ,ta lần lượt có :

                          AM > AB - BM

                          AM > AC - MC

Cộng theo từng vế hai bất đẳng thức trên,ta có :

2AM > AB + AC - (BM + MC) = AB + AC - BC hay \(AM>\frac{AB+AC-BC}{2}\)                (1)

Trên tia đối của tia MA lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(gt)

MB = MC(gt)

\(\widehat{M}\)chung

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{MAB}=\widehat{MDC}\)(hai góc tương ứng)

=> CD = AB(hai cạnh tương ứng)

Xét \(\Delta ACD\),theo bất đẳng thức tam giác ta có :

AD < AC + CD

=> \(2AM< AC+AB\)

=> \(AM< \frac{AB+AC}{2}\)(2)

Từ (1) và (2) suy ra \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)

28 tháng 4 2019

A B C M D

Trên tia đối của tia AM lấy điểm D sao cho AM=MD

Xét tam giác AMB VÀ TAM GIÁC DMC có

MB=MC(gt)

AM=MD(cách dựng)

\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)

\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)

\(\Rightarrow\)AB=CD(2 cạnh tương ứng)

Xét tam giác ACD có

AD<CD+AC(bất đẳng thức tam giác)

\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)

Mà AD=AM+MD=2AM

\(\Rightarrow2AM< AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)

28 tháng 4 2019

Kẻ đoạn thẳng AM

Trên tia AM lấy điểm K sao cho M là trung điểm của AK

=> MA = MK = AK/2 => 2AM = AK

M là trung điểm của BC ( gt ) => MB = MC

Xét tam giác AMB và tam giác KMC có :

MA = MK ( cmt )

AMB = KMC ( đối đỉnh )

MB = MC ( cmt )

Do đó tam giác AMB = tam giác KMC ( c . g . c )

=> AB = CK ( 2 cạnh tương ứng )

CÓ AK < AC + CK ( bất đẳng thức trong tam giác )

hay 2AM < AC + AB

=> AM < \(\frac{AC+AB}{2}\)( dpcm )

Vậy ...

A B C D M c b

Trên tia đối của tia MA lấy điểm D sao cho MD=MA

Xét \(\Delta AMB\)và \(\Delta DMC\):

MB=MC(gt)

\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)

BM=CM(gt)

=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)

=> DC=AB=c

Xét \(\Delta ACD\)có: AD<AC+DC

=> 2AM<b+c

=> \(AM< \frac{b+c}{2}\)

=> Đpcm

P/s:Phần này là phần BĐT tam giác ý, dễ mà:>

26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2018

A B C M D

Trên tia đối của MA lấy điểm D sao cho MA = MD

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(BM=CM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

\(MA=MD\) (cách vẽ)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

\(\Rightarrow AB=CD\)(2 cạnh tương ứng)

Xét \(\Delta ACD\) có: \(AD< AC+CD\)

\(\Rightarrow2AM< AC+AB\)

\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)

Xét \(\Delta MAB\)có: \(AM>AB-BM\)

Xét \(\Delta MAC\)có: \(AM>AC-MC\)

\(\Rightarrow AM+AM>AB-BM+AC-MC\)

\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)

\(\Rightarrow2AM>AB+AC-BC\)

\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)

Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)