K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Bạn tự chứng minh được DE =1/2 AC ,EF =1/2 AB và DF =1/2 BC

Do đó: Tam giác ABC đồng dạng với tam giác DEF (c.c.c)

b, Tam giác DEF đồng dạng với tam giác ABC theo tỉ số 2 cạnh tương ứng là DE/AC =2 (hoặc EF/AB,DF/BC thì cũng ra 2)

Chúc bạn học tốt.

Tham khảo qua link này nhé bạn :

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-lan-luot-la-trung-diem-cua-ab-bc-ac-a-tam-giac-abc-va-def-co-dong-dang-voi-nhau-khong

Học tốt

22 tháng 2 2021

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyoiyygyhiui

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78
15 tháng 4 2020

Tự vẽ hình~

Xét tam giác ABC và tam giác DFE

\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)

\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)

 \(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)

\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)

=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)

Bài 7:

Đặt a=A'B',b=A'C', c=B'C'

Theo đề,ta có: a/6=b/8=c/10

mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm

nên b/8=c/10=9/6=3/2

=>b=12cm; c=15cm

8 tháng 4 2022

Ta có:

Tam giác ABC dồng dạng tam giác DEF ( gt )

=> ^B = ^E

\(\Rightarrow\dfrac{BC}{EF}=\dfrac{AB}{AC}=k\)

\(\Rightarrow\dfrac{BM}{EN}=\dfrac{BC:2}{EF:2}=\dfrac{BC}{EF}=\dfrac{AB}{DE}=k\)

Xét tam giác ABM và tam giác DEN, có:

^ B = ^E ( cmt )

\(\dfrac{BM}{EN}=\dfrac{AB}{DE}\)

Vậy tam giác ABM đồng dạng tam giác DEN ( c.g.c )

Xét tam giác ACM và tam giác DFN, có:

^C = ^F ( tam giác ABC đồng dạng tam giác DEF )

\(\dfrac{CM}{FN}=\dfrac{AC}{DF}=k\) ( cmt )

Vậy tam giác ACM đồng dạng tam giác DFN ( c.g.c )

\(\Rightarrow\dfrac{AC}{DF}=\dfrac{AM}{DN}\)

8 tháng 4 2022

Phải đặt k là tỉ số đồng dạng chứ

Có cách khác nè

Do M, N lần lươt là TĐ của BC và EF

\(\Rightarrow MB=MC=\dfrac{1}{2}BC;EN=FN=\dfrac{1}{2}EF\)

Vì △ABC ~ △DEF

\(\Rightarrow\dfrac{BC}{EF}=\dfrac{AB}{DE}\left(2\right)\)

Xét \(\dfrac{MB}{EN}=\dfrac{\dfrac{1}{2}BC}{\dfrac{1}{2}EF}=\dfrac{BC}{EF}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow...\)