Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BAC=góc BCA
=>sđ cung BC=sđ cung BA
b: xy//DE
=>góc AED=góc yAE=góc ABC
c: góc AED=góc ABC
=>góc ABC+góc DEC=180 độ
=>BCDE nội tiếp
a) Ta có: AE,AF là tiếp tuyến \(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A
\(\Rightarrow\angle AEF=\angle AFE\Rightarrow\angle BFX=\angle CEY\)
Xét \(\Delta BFX\) và \(\Delta CEY:\) Ta có: \(\left\{{}\begin{matrix}\angle BFX=\angle CEY\\\angle BXF=\angle CYE=90\end{matrix}\right.\)
\(\Rightarrow\Delta BFX\sim\Delta CEY\left(g-g\right)\Rightarrow\dfrac{BF}{CE}=\dfrac{BX}{CY}\)
mà \(\left\{{}\begin{matrix}BF=BD\\CE=CD\end{matrix}\right.\) (tính chất tiếp tuyến) \(\Rightarrow\dfrac{BD}{CD}=\dfrac{BX}{CY}\)
Vì \(BX\parallel DK\parallel CY\) \(\Rightarrow\dfrac{XK}{KY}=\dfrac{BD}{CD}\Rightarrow\dfrac{BX}{CY}=\dfrac{XK}{KY}\)
Xét \(\Delta BKX\) và \(\Delta CKY:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BK}{CY}=\dfrac{KX}{KY}\\\angle BXK=\angle CYK=90\end{matrix}\right.\)
\(\Rightarrow\Delta BKX\sim\Delta CKY\left(c-g-c\right)\Rightarrow\angle BKX=\angle CKY\)
\(\Rightarrow90-\angle BKX=90-\angle CKY\Rightarrow\angle BKD=\angle CKD\)
\(\Rightarrow\dfrac{BK}{KC}=\dfrac{BD}{CD}\Rightarrow BD.CK=BK.CD\)
700 bạn nhé