Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha
Ta luôn có:
\(AD>AB-BD\)
\(AD>AC-CD\)
Suy ra: \(2AD>AB+AC-\left(BD+CD\right)\)
Suy ra: \(AD>\frac{AB+AC-\left(BD+CD\right)}{2}>\frac{AB+AC-BC}{2}\)(1)
Mặt khác:
\(AB>AD-BD\)
\(AC>AD-CD\)
Suy ra: \(AB+AC>2AD-\left(BD+CD\right)>2AD-BC\)
\(\Rightarrow AB+AC+BC>2AD\)
\(\Rightarrow\frac{AB+AC+BC}{2}>AD\)(2)
Từ (1) và (2)
......
BN tự Kết luận.
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
+) Trong tam giác ABD, có:
AD - BD < AD < AB + BD ( theo bất đẳng thức của tam giác ) (1)
+) Trong giác ACD, có:
AC - CD < AD < AC + CD ( theo bất đẳng thức của tam giác ) (2)
+) Cộng (1) với (2), ta được:
AB - BD +AC -CD < 2AD < AB + BD + AC + CD
AB + AC - ( BD + CD ) < 2AD < AB + AC+ ( BD + CD )
\(\frac{AB+AC-BC}{2}\) < AD < \(\frac{AB+AC+BC}{2}\) (đpcm)
Tam giác ABD có:
AD + BD > AB (Bất đẳng thức tam giác) (1)
AB + BD > AD (Bất đẳng thức tam giác) (2)
Tam giác ACD có:
AD + DC > AC (Bất đẳng thức tam giác) (3)
AC + CD > AD (Bất đẳng thức tam giác) (4)
Từ (1) và (3)
=> AD + BD + AD + DC > AC + AB
2AD + BC > AC + AB
=> AD > (AC + AB - BC)/2 (5)
Từ (2) và (4)
=> AB + BD + AC + CD > AD + AD
AB + AC + BC > 2AD
(AB + AC + BC) > AD (6)
Từ (5) và (6) => ĐPCM
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết
Ta có:
\(AD>AB-BD\) (BĐT trong \(\Delta ABD\) ) \(\left(1\right)\)
\(AD>AC-CD\) (BĐT trong \(\Delta ACD\) ) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) cộng vế:
\(\Rightarrow2AD>AB-BD+AC-CD\\ \Rightarrow2AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
Tương tự, ta có:
\(AD< AB+BD\) (BĐT trong \(\Delta ABD\) ) \(\left(4\right)\)
\(AD< AC+CD\) (BĐT trong \(\Delta ACD\) ) \(\left(5\right)\)
Từ \(\left(4\right)\left(5\right)\), cộng vế:
\(\Rightarrow2AD< AB+BD+AC+CD\\ \Rightarrow2AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
mà
\(AD>\dfrac{AB+AC-BC}{2}\left(cmt\right)\\ \Rightarrow\dfrac{AB+AC-BC}{2}< AD< \dfrac{AB+AC+BC}{2}\)
\(AD>AB-BD\\ AD>AC-CD\\ \Rightarrow2.AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
\(AD< AB+BD\\ AD< AC+CD\\ \Rightarrow2.AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)