Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi K là trung điểm của EC
=>AE=EK=KC
Xét ΔBEC có
M là trung điểm của BC
K là trung điểm của EC
Do đó: MK là đường trung bình
=>MK//BE và MK=BE/2
Xét ΔAMK có
E là trung điểm của AK
ED//MK
Do đó: D là trung điểm của AM
b: Gọi G là trung điểm của FB
Xét ΔBFC có
G là trung điểm của BF
M là trung điểm của BC
Do đó: GM là đường trung bình
=>GM//FC
hay FD//GM
Xét ΔAGM có
D là trung điểm của AM
DF//GM
Do đó: F là trung điểm của AG
=>AF=FG=GB
=>AF=1/3AB
Xé ΔABC có AF/AB=AE/AC
nên FE//BC
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Gọi G là trung điểm của EC.
Xét ΔBEC có: EG = CG (cách vẽ); BM = CM (gt).
=> MG là đường trung bình của ΔBEC.
=> MG // BE hay MG // DE.
Ta có: \(AE+EG+GC=AC\)
mà \(AE=\dfrac{1}{3}AC\) (1)
=> \(EG+GC=\dfrac{2}{3}AC\)
lại có: EG = GC (cách vẽ).
=> \(EG=GC=\dfrac{1}{3}AC\) (2)
Từ (1) và (2) suy ra AE = EG = GC.
Xét ΔAMG có: MG // DE (cmt); AE = EG (cmt).
=> AD = MD.
b) Lấy H là trung điểm của BF.
Áp dụng định lý Ta-lét, ta có: \(AF:FH:HB=AE:EG:GC\)
mà AE = EG = GC (câu a).
=> AF = FH = HB.
Xét ΔAHG có: AE = GE (cm ở câu a); AF = FH (cmt).
=> EF là đường trung bình của ΔAHG.
=> EF // HG.
tương tự nếu cm đc HG // BC thì bắc cầu lại EF // BC.