Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 2 cái hình vì con chưa hc lp 8.
Bài 1
A B C M N
Bài 2 : G A B C M D E
a) Xét 2 ▲vuông ADH và AHM, ta có:
HI và DI là đường trung tuyến của 2 ▲
⇒ DI = IH (=AI=IM)
⇒▲DIH cân tại I
Ta có: ▲ ADI cân tại I (DI=AI) ⇒ góc DIM = 2. góc IAD
▲ AHI cân tại I (HI=AI) ⇒ góc HIM = 2. góc IAH
⇒ góc DIH = 2.(góc IAD + góc HAI ) = 2. góc DAH= 2 . 30 độ = 60 độ ⇒ ▲ DIH đều
CMTT: ▲ IEH đều ⇒ DIEH là hình thoi
b) Gọi O là giao DE và HI và K là trung điểm AG, ta có IK là trung bình tam giác AMG và OG là trung bình tam giác KIH.
=> MG//IK và OG//IK
=> Tia MG và OG trùng nhau hay M, G, O thẳng hàng => MG, IH, DE đồng quy tại O
Chúc bạn học tốt☘
1: Xet ΔBCA có
E,D lần lượt là trung điểm của AB,AC
nên ED là đừog trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
N,M lần lượt là trung điểm của GB,GC
nên NM là đường trung bình
=>NM//BC và NM=BC/2
=>ED//MN và ED=MN
=>EDMN là hình bình hành
MN+DE=BC/2+BC/2=BC<AB+AC
2 Để MNED là hình chữ nhật thì ED vuông góc EN
=>AG vuông góc BC
=>ΔABC cân tại A
=>AB=AC
3: NK=5NB
=>BK=6BN
=>BK=2BD
->D là trung điểm của BK
Xét tứ giác ABCK có
D là trung điểm chung của AC và BK
=>ABCK là hình bình hành
=>AK//BC
ta gọi AH,AK là 2 đường trung tuyến của tam giác ABM và AMC
ta có D,G,N lần lượt là trọng tâm tam giác ABM,ABC,AM
=> \(\frac{AD}{AH}=\frac{AG}{AM}=\frac{AN}{AK}=\frac{2}{3}\) (tính chất trọng tâm)
=> DG//BC(đingj lí ta lét) và GN//BC(định lí ta lét )
=> D,G,N thẳng hàng(ĐPCM)
bạn ơi xem lại đề đi sao M lại là trọng tâm của tam giác AMB?
a) -Xét △ABM có: \(EG\)//\(BM\) (gt)
=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).
=>\(BE.AG=AE.MG\).
b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)
=>\(BM\)//\(CN\).
- Xét △BMD và △CND có:
\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).
\(BD=CD\) (D là trung điểm AB).
\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).
=>△BMD = △CND (c-g-c).
=>\(MD=ND\) (2 cạnh tương ứng).
*\(GM+GN=GD-MD+GD+ND=2GD\)
bạn tự vẽ hình nhé !
Nối EN, NM, ME. Ta có G là trọng tâm tam giác ABC nên G là giao điểm 3 đường trung tuyến , do đó E, G , C thẳng hàng.(1)
bây giờ chứng minh E,G,D thẳng hàng thì sẽ có C,G,E,D thẳng hàng.
Ta có E là trung điểm AB, N là trung điểm AC suy ra EN là đường trug bình tam giác ABC nên EN =1/2 BC và EN song2 với BC. lại có MC=1/2 BC ( M trug điểm BC)
suy ra EN = CM và EN song2 với CM từ đó ENCM là hình bình hành.
Xét hình bình hành ENCM có D là trung điểm MN suy ra D là trug điểm EC => ED=DC.
Vì G là trọng tâm tam giác ABC nên EG=1/3 EC=2/3ED (vì ED=1/2 EC)
Xét tam gác ENM có ED là trung tuyến , EG=2/3 ED suy ra G là trọng âm tam giác ENM. suy ra EGD thẳng hàng (2)
TỪ 1 và 2 suy ra E,G,D,C thẳng hàng