K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

bạn tự vẽ hình nhé !

Nối EN, NM, ME.  Ta có G là trọng tâm tam giác ABC nên G là giao điểm 3 đường trung tuyến , do đó E, G , C thẳng hàng.(1)

bây giờ chứng minh E,G,D thẳng hàng thì sẽ có C,G,E,D thẳng hàng.

Ta có E là trung điểm AB, N là trung điểm AC suy ra EN là đường trug bình tam giác ABC nên EN =1/2 BC và EN song2 với BC. lại có MC=1/2 BC ( M trug điểm BC)

suy ra EN = CM và EN song2 với CM từ đó ENCM là hình bình hành. 

Xét hình bình hành ENCM có D là trung điểm MN suy ra D là trug điểm EC => ED=DC.

Vì G là trọng tâm tam giác ABC nên EG=1/3 EC=2/3ED (vì ED=1/2 EC)

Xét tam gác ENM có ED là trung tuyến , EG=2/3 ED suy ra G là trọng âm tam giác ENM. suy ra EGD thẳng hàng (2)

TỪ 1 và 2 suy ra E,G,D,C thẳng hàng

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
9 tháng 7 2020

vẽ giúp mình hình luônn nhess

Cho 2 cái hình vì con chưa hc lp 8.

Bài 1 

  A B C M N

Bài 2 :  G A B C M D E

Điểm N ở đâu vậy bạn?

3 tháng 10 2024

a) Xét 2 ▲vuông ADH và AHM, ta có: 

 HI và DI là đường trung tuyến của 2 ▲

⇒ DI = IH (=AI=IM)

⇒▲DIH cân tại I  

Ta có: ▲ ADI cân tại I (DI=AI) ⇒  góc DIM = 2. góc IAD

           ▲ AHI cân tại I (HI=AI) ⇒  góc HIM = 2. góc IAH

 ⇒ góc DIH = 2.(góc IAD + góc HAI ) = 2. góc DAH= 2 . 30 độ = 60 độ ⇒ ▲ DIH đều 

CMTT: ▲ IEH đều ⇒ DIEH là hình thoi 

b)  Gọi O là giao DE và HI và K là trung điểm AG, ta có IK là trung bình tam giác AMG và OG là trung bình tam giác KIH. 
=> MG//IK và OG//IK 
=> Tia MG và OG trùng nhau hay M, G, O thẳng hàng => MG, IH, DE đồng quy tại O 

Chúc bạn học tốt

1: Xet ΔBCA có

E,D lần lượt là trung điểm của AB,AC

nên ED là đừog trung bình

=>ED//BC và ED=BC/2

Xét ΔGBC có

N,M lần lượt là trung điểm của GB,GC

nên NM là đường trung bình

=>NM//BC và NM=BC/2

=>ED//MN và ED=MN

=>EDMN là hình bình hành

MN+DE=BC/2+BC/2=BC<AB+AC

2 Để MNED là hình chữ nhật thì ED vuông góc EN

=>AG vuông góc BC

=>ΔABC cân tại A

=>AB=AC

3: NK=5NB

=>BK=6BN

=>BK=2BD

->D là trung điểm của BK

Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

=>ABCK là hình bình hành

=>AK//BC

29 tháng 1 2023

Thanks b nha :))

 

17 tháng 9 2017

ta gọi AH,AK là 2 đường trung tuyến của tam giác ABM và AMC

ta có D,G,N lần lượt là trọng tâm tam giác ABM,ABC,AM

=> \(\frac{AD}{AH}=\frac{AG}{AM}=\frac{AN}{AK}=\frac{2}{3}\) (tính chất trọng tâm)

=> DG//BC(đingj lí ta lét) và GN//BC(định lí ta lét )

=> D,G,N thẳng hàng(ĐPCM)

17 tháng 9 2017

bạn ơi xem lại đề đi sao M lại là trọng tâm của tam giác AMB?

3 tháng 2 2022

a) -Xét △ABM có: \(EG\)//\(BM\) (gt)

=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).

=>\(BE.AG=AE.MG\).

b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)

=>\(BM\)//\(CN\).

- Xét △BMD và △CND có:

\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).

\(BD=CD\) (D là trung điểm AB).

\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).

=>△BMD = △CND (c-g-c).

=>\(MD=ND\) (2 cạnh tương ứng).

*\(GM+GN=GD-MD+GD+ND=2GD\)