Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABH vuông tại H, HE là đường cao
\(\Rightarrow AH^2=AE.AB\)(1)
Tam giác AHC vuông tại H, HF là đường cao
\(\Rightarrow AH^2=AF.AC\)(2)
từ (1) và (2) nên AE.AB=AF.AC(đpcm)
b) Tam giác ABC vuông tại A, AH là đường cao
\(\Rightarrow AB^2=BH.BC\)(3)
Tam giác BIC vuông tại B, BA là đường cao
\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)
c) Tam giác ABC vuông tại A, đường cao AH
\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)
BC=9+16=25(cm)
Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)
\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)
Tam giác ABC có AD là phân giác
\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)
\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)
Áp dụng định lý Py-ta-go vào tam giác vuông AHD:
\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)
d) Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC\);\(AC^2=CH.BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)
Còn câu e chờ mình xíu
c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H
=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)
Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)
Tam giác ABC vuông tại A ﴾gt﴿
=> góc BAD + DAC = 90\(^0\)﴾1﴿
Tam giác HAD vuông tại H có:
góc HDA + HAD = 90\(^0\) ﴾2﴿
Mà góc HAD = góc DAC ﴾ vì AD là p/g của HAC ﴿ ﴾3﴿
Từ ﴾1﴿ ﴾2﴿ và ﴾3﴿ => góc BAD = góc BDA => tam giác ABD cân tại B
=> AB=BD﴾ t/c tam giác cân ﴿
Tam giác ABC có AH là đường cao :
AB 2 = BH * BC ﴾ Hệ thức lượng﴿
<=> AB 2 = ﴾ BD‐6﴿ * BC
<=> AB 2 = ﴾AB‐6﴿ * 25
<=> AB 2 ‐25AB + 150 = 0
<=> ﴾ AB‐10﴿ * ﴾AB‐15﴿=0
<=> AB=10 hoặc AB=15