Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(1\right)=a.1^2+b.1+c\)
\(=a+b+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(1\right)+f\left(-2\right)=a+b+c+5a-2b+c\)
\(=5a-b+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(-2\right)\)
\(\Rightarrow f\left(1\right).f\left(-2\right)\le0\)
b) Thay a=1 ; b=2 ; c=3 vào đa thức f(x) ta được
\(f\left(x\right)=x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\forall x\)
Vậy đa thức f(x) vô nghiệm
Câu d ) - Vì tam giác AMN là tam giác cân AM = AN
- Ta có AM - MK = AN - HN
- Mà tam giác vuông KMB = tam giác vuông HNC (chứng minh ở câu b)
- Suy ra AK = AH
- Suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - góc A : 2
- Tam giác AMN có : góc M = 180 - góc A : 2
- S
Câu d ) - Vì tam giác AMN là tam giác cân suy ra AM = AN
- Vì tam giác vuông KMB = tam giác vuông HNC suy ra KM = HN
- Ta có AM - KM = AN - HN
- Suy ra AK = AH suy ra tam giác AKH là tam giác cân
- Suy ra góc AKH = 180 độ - A : 2
- Tam giác AMN có : góc M = 180 độ - A :2
- Suy ra góc K = góc M ( ở vị trí đồng vị )
- Suy ra HK // MN
a/ Giả sử: |x| + |y| < |x + y| => ( |x| + |y| )2 < ( |x + y|2) => x2 + 2 . |x| . |y| + y2 < x2 + 2xy + y2 => |x| . |y| < xy (Vô lý)
=> |x| + |y| \(\ge\) |x + y|
b/ Giả sử: |x| - |y| > |x - y| => ( |x| - |y| )2 > ( |x - y|2) => x2 - 2 . |x| . |y| + y2 < x2 - 2xy + y2 => - |x| . |y| > -xy (Vô lý)
=> |x| - |y| \(\le\) |x - y|
Cách 2:
a/ Giả sử: |x| + |y|\(\ge\)|x + y| => ( |x| + |y| )2 \(\ge\) ( |x + y|2) => x2 + 2 . |x| . |y| + y2 \(\ge\) x2 + 2xy + y2 => |x| . |y| \(\ge\) xy (Bất đẳng thức đúng)
Vậy |x| + |y| \(\ge\) |x + y|
b/ Giả sử: |x| - |y| \(\le\)|x - y| => ( |x| - |y| )2 \(\le\)( |x - y|2) => x2 - 2 . |x| . |y| + y2 \(\le\)x2 - 2xy + y2 => - |x| . |y| \(\le\) -xy (Bất đẳng thức đúng)
Vậy |x| - |y| \(\le\) |x - y|
\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) \(\ge\)luôn đúng
=> đpcm
hình bn tự vẽ nhé!!
b, Ta có \(\widehat{B}=\widehat{C}\left(gt\right)\)
Do đó \(\Delta ABC\)cân tại A
Suy ra \(AB=AC\)
a, Xét \(\Delta ABD\)và \(\Delta ADC\)có:
\(\widehat{ABD}=\widehat{ACD}\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{BAD}=\widehat{CAD}\)( vì AD là tia phân giác của góc BAC)
\(\Rightarrow\Delta ADB=\Delta ADC\left(g-c-g\right)\)
hok tốt!!
Xét tam giác ABC, có: góc B = góc C.
=> tam giác ABC cân tại A.
=> AB = AC.
Xét tam giác ADB và ADC:
Có: góc DAB = góc DAC ( GT ).
AB = AC ( Chứng minh trên ).
góc ABD = góc ACD ( GT ).
=> tam giác ADB = tam giác ADC ( g.c.g ) (đpcm)
Hoặc :
a. Xét ΔADC và ΔADB, có:
^A1 = ^A2 (gt)
^B = ^C (gt)
AB = AC (vì ΔABC cân tại A)
=> ΔADC = ΔADB (g.c.g)
b.
Vì ^B = ^C (gt)
=> ΔABC cân tại A (2 góc đáy bằng nhau)
=> AB = AC (2 cạnh bên)
=> đcpcm