Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H
Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)
Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)
Kẻ đường cao AH (H thuộc BC)
Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)
Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\)
Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)
Từ (1) , (2) , (3) ta có điều phải chứng minh.
Ta co:
Vì tam ABC vuông tại A co D là trung điểm BC nên \(\widehat{MAC}=\widehat{MCA}=\frac{\widehat{AMB}}{2}\)
\(\Rightarrow\beta=2\alpha\)
Từ đây ta co:
\(cos^2\alpha-sin^2\alpha=cos\left(2\alpha\right)=cos\beta\)
Em tự vẽ hình nhé~
Lấy E trên AC sao cho DE song song với AB. Theo tính chất đường phân giác và định lý Ta-let,
ta có \(\frac{CE}{EA}=\frac{CD}{DB}=\frac{AC}{AB}=\frac{b}{c}\to\frac{CE}{EA}=\frac{b}{c}\to\frac{CE+EA}{EA}=\frac{b+c}{c}\to\frac{b}{EA}=\frac{b+c}{c}\to AE=\frac{bc}{b+c}\).
Mặt khác AD là phân giác góc A nên \(\angle ADE=\angle DAB=\angle DAE\to\Delta ADE\) cân ở E.
Kẻ EH vuông góc với AD, suy ra H là trung điểm AD. Xét tam giác vuông AEH có \(AH=AE\cdot\cos\alpha=\frac{bc}{b+c}\cdot\cos\alpha\to AD=\frac{2bc}{b+c}\cdot\cos\alpha.\)