Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDCE có
I là trung điểm của BC
I là trung điểm của DE
Do đó: BCDE là hình bình hành
Suy ra: BD=CE và BD//CE
b: Ta có: BD//CE
nên góc ECB=góc DBI
mà góc DBI=góc ACB
nên góc ECB=góc ACB
hay CB là phân giác của góc ACE
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM