K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>a+b+c=180(1)

\(\widehat{A}-\widehat{B}+\widehat{C}=90^0\)

=>a-b+c=90(2)

\(\widehat{A}-\widehat{C}=-5^0\)

=>\(\widehat{C}-\widehat{A}=5^0\)

=>c-a=5(3)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b+c=180\\a-b+c=90\\c-a=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a+c+b=180\\a+c-b=90\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+c=\dfrac{180+90}{2}=\dfrac{270}{2}=135\\b=\dfrac{180-90}{2}=\dfrac{90}{2}=45\\c-a=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=45\\c+a=135\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=45\\c=\dfrac{135+5}{2}=\dfrac{140}{2}=70\\a=c-5=70-5=65\end{matrix}\right.\)

Vậy: \(\widehat{A}=65^0;\widehat{B}=45^0;\widehat{B}=70^0\)

Xét ΔABC có \(\widehat{B}< \widehat{A}< \widehat{C}\)

mà AC,BC,AB lần lượt là cạnh đối diện của các góc ABC;BAC;ACB

nên AC<BC<AB

14 tháng 1 2024

cảm ơn ạ!

 

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi

7 tháng 7 2017

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

a) \(\Delta ABD=\Delta EBD\left(c.g.c\right)\Rightarrow DA=DE\)

b) Vì \(\Delta ABD=\Delta EBD\) nên \(\widehat{A}=\widehat{BED}\). Do \(\widehat{A}=90^0\) nên \(\widehat{BED}=90^0\)

6 tháng 11 2016

a/ Gọi E là trung điểm của BC

Ta có: \(BC=2AB\left(gt\right)\)

\(\Rightarrow AB=\frac{1}{2}BC\) (1)

Lại có E là trung điểm của BC

\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)

Từ (1) và (2) \(\Rightarrow AB=BE=EC\)

Xét \(\Delta BDA\)\(\Delta BDE\) có:

BD chung

\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))

AB=BE (cmt)

Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)

Xét \(\Delta BED\)\(\Delta CED\) có:

\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))

DE chung

BE=EC (cmt)

Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)

\(\Rightarrow DB=DC\) (hai cạnh tương ứng)

b/ Xét \(\Delta ABC\) có:

\(\widehat{B}+\widehat{C}=90^0\)

Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)

Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)

Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)

Lưu ý: Hình vẽ minh họa phía dưới
A D C B E 1 2 1 2 1 2 3

Bài 3: 

\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)

\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//BC

Bài 15: 

\(\widehat{ABH}+\widehat{A}=90^0\)

\(\widehat{ACK}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABH}=\widehat{ACK}\)