K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có

góc HAB chung

Do đó: ΔAHB\(\sim\)ΔADH

Xét ΔAHC vuông tại H và ΔAEH vuông tại E có

góc HAC chung

Do đó: ΔAHC\(\sim\)ΔAEH

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc hBE

=>ΔABE=ΔHBE

c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBM chung

=>ΔBHM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

mà BN là đường phân giác

nên N là trung điểm của CM

=>NM=NC

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc MAC+góc AED=90 độ

=>góc MAC+góc AHD=90 độ

=>góc MAC+góc B=90 độ

=>góc MAC=góc MCA và góc MAB=góc MBA

=>MA=MB=MC

=>M là trung điểm của BC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=20^2/25=16(cm)

AD=12^2/15=144/15=9,6cm

AE=12^2/20=7,2cm

\(S_{ADE}=\dfrac{1}{2}\cdot7.2\cdot9.6=34.56\left(cm^2\right)\)

9 tháng 4 2023

cm bn nha

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB