Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b; góc BAM=góc CDA
mà góc CDA>góc CAM
nên góc BAM>góc CAM
Bạn vẽ hình ...
a)
Xét \(\Delta ABM\)và \(\Delta DCM\)có
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{DCM}\left(đ^2\right)\)
\(BM=MC\left(gt\right)\)
=> \(\Delta ABM\)=\(\Delta DCM\)(c.g.c)
Xét tam giác ABM và tam giác DCM có:
AM=MD
góc AMB=góc CMD ( đối đỉnh)
BM=CM ( M là trung điểm của BC)
=> tam giác ABM=tam giác DCM( c.g.c)
b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D
mà chúng là hai góc so le trong => AB//DC
c) Vì AB=AC=> tam giác ABC cân tại A
tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC
d) Để góc ADC=30 độ thì góc BAM=30 độ
=> góc B= 90 độ-30 độ=60 độ
tam giác ABC cân tai A có góc B =60 độ
=> tam giác ABC đều
Vậy tam giác ABC đều thì góc ADC=30 độ
a) xét tam giác ABM và tam giác DCM có:
MA = MD (gt)
góc AMB = góc CMD (đối đỉnh)
BM = CM (gt)
=> tam giác ABM = tam giác DCM (c.g.c)
b) vì tam giác ABM = tam giác DCm (câu a)
=> AB = DC (cạnh tương ứng)
góc ABM = góc MCD (góc tương ứng)
mà góc ABM và góc MCD ở vị trí so le trong
=> AB // DC