Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )
a, AB = 6 => AB^2 = 6^2 = 36
AC = 8 => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 => BC^2 = 10^2 = 100
=> BC^2 = AB^2 + AC^2
=> tam giác ABC vuông tại A (định lí PTG đảo)
a) Theo đề ra ta có:
AB= 6 (cm) => \(AB^2=6^2=36\)
AC= 8 (cm) => \(AC^2=8^2=64\)
BC=10(cm) => \(BC^2=10^2=100\)
Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)
b) Xét tam giác vuông BAD và tam giác vuông BED, ta có:
\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)
Chung BD
=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)
=> DE=DA( cạnh tương ứng)
c) Xét tam giác EDC và tam giác ADF, có:
\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)
DE=DA
\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)
=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF=DC( cạnh tương ứng)
*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE
Mà DC=DF => DF>DE
d)
Do tam giác BED = tam giác BAD => BE=BA (1)
Tam giác EDC= tam giác ADF => EC=AF(2)
Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.
Xét tam giác BCK và tam giác BFK,có:
BF=BC
\(\widehat{B_1}=\widehat{B_2}\)
Chung BK
=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)
và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)
Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.
P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC
Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
mk nhanh nhất nha
Cho tam giác ABC vuoog tại A, đường phân giác BD. Kẻ DE vuong góc với BC ( E thuộc BC) Trên tia đối của tia AB lấy F sao cho AF = CE. Chứng minh :
- Tam giác ABD = EBD
- BD là đường trug trực của đoạn thẳng AE
- AD , DC
- Goác ADF = goác EDC và E, F, D thẳng hàng
+) Áp dụng định lí Py-ta-go trong tam giác vuông ABC , ta có:
\(AC^2=AB^2+BC^2\)
=>\(AC^2=36+64\)
=>\(AC^2=100\)
=>AC=10(cm)
+) Xét \(\Delta vABDv\text{à}\Delta vADEc\text{ó}:\)
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(là tia phân giác của góc A)
=>\(\Delta vABD=\Delta vADE\left(ch-gn\right)\)
+)Ta có :
-Góc đối diện với cạnh BD là gócBAD(góc nhọn)
-Góc đối diện với cạch CD là gócDEC.(góc vuông)
Vì góc DEC > góc BAD nên BD < CD (đpcm)
tự kẻ hình :
a, xét tam giác CAD và tam giác EAD có : AD chung
góc CAD = góc EAD do AD là phân giác của góc A (Gt)
góc DCA = góc DEA = 90 do ...
=> tam giác CAD = tam giác EAD (ch - gn)
b, xét tam giác KDC và tam giác BDE có : góc KDC = góc BDE (đối đỉnh)
DC = DE do tam giác CAD = tam giác EAD (Câu a)
góc DCK = góc DEB = 90 do...
=> tam giác KDC = tam giác BDE (cgv - gnk)
=> DK = DB (đn)
c, cm theo th c - g - c
Áp dụng định lí py ta go trong tam giác ABC ta có:
AB2+AC2=BC2
62+82=102
36+64=100
Suy ra tam giác ABC vuông (giải hộ câu a thôi tự nghĩ đi)