Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta CAF\) và \(\Delta BAE\) có:
\(\widehat{CFA}=\widehat{BEA}=90^0\)
\(\widehat{BAC}:\) chung
suy ra: \(\Delta CAF~\Delta BAE\)
\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)\(\Rightarrow\) \(AE.AC=AF.AB\) (ĐPCM)
\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\) có:
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\widehat{BAC}\) CHUNG
suy ra: \(\Delta AEF~\Delta ABC\)
A B C D E F
Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(\widehat{A}\)chung
\(\widehat{AEB}=\widehat{AFC\:}=90^0\)
suy ra: \(\Delta ABE~\Delta ACF\)(g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)hay \(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\)có:
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
\(\widehat{A}\) chung
suy ra: \(\Delta AEF~\Delta ABC\) (c.g.c)
a,\(\Delta AFE\infty\Delta BFD\left(g.g\right)\)
b, \(\Delta CBE\infty\Delta CAD\left(g.g\right)\Rightarrow\frac{CB}{CA}=\frac{CE}{CD}\Rightarrow\frac{CB}{CE}=\frac{CA}{CD}\)
c, Tam giác CEB có CM là tia p/g của \(\widehat{ECB}\left(M\in EB\right)\left(gt\right)\Rightarrow\frac{CB}{CE}=\frac{MB}{ME}\)
\(\Delta CDA\) có CN là tia phân giác của \(\widehat{ACD}\left(gt\right)\Rightarrow\frac{CA}{CD}=\frac{AN}{ND}\)
Mà \(\frac{CB}{CE}=\frac{CA}{CD}\left(cmt\right)\Rightarrow\frac{MB}{ME}=\frac{AN}{ND}\Rightarrow AN.ME=MB.ND\)
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó:H là trực tâm
=>AH vuông góc với BC tại D
b: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc ECB chung
DO đó: ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)
c: Xét tứ giác HDCE có \(\widehat{HDC}+\widehat{HEC}=180^0\)
nên HDCE là tứ giác nội tiếp
=>\(\widehat{ADE}=\widehat{ACH}\)