K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

Ta có: ΔBAC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó; ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

c: BC=6cm nên BM=CM=3cm

=>AM=4cm

d: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

16 tháng 3 2022

cám ơn bạn nhiều!vui

12 tháng 3 2022

undefined

câu a)

12 tháng 3 2022

undefined

câu b)

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

14 tháng 2 2020

A B C M E F = =

a) Xét △AMB và △AMC có:

AB = AC (△ABC cân)

AM: chung

MB = MC (M: trung điểm BC)

=> △AMB = △AMC (c.c.c)

=> AMB = AMC (2 góc tương ứng)

Mà AMB + AMC = 180o (kề bù)

=> 2AMB = 2AMC = 180o

=> AMB = AMC = 180o : 2 = 90o

=> AM \(\perp\)BC (đpcm)

b) Xét △MBE và MCF có:

MEB = MFC ( = 90o)

MB = MC (M: trung điểm BC)

EBM = FCM (△ABC cân)

=> △MBE = △MCF (ch-gn)

=> ME = MF (2 cạnh tương ứng)

=> △EMF cân tại M (đpcm)

c) Vì △MBE và △MCF => BE = CF

Ta có:

AB = AE + EB

AC = AF + FC

Mà AB = AC (△ABC cân) và EB = FC (cmt)

=> AE = AF

=> △AEF cân tại A

=> AEF = \(\frac{180^o-A}{2}\)(1)

Vì △ABC cân tại A

=> ABC = \(\frac{180^o-A}{2}\)(2)

Từ (1) và (2) => AEF = ABC

Mà hai góc này ở vị trí so le trong

=> EF // BC (đpcm)

28 tháng 1 2018

Làm ơn làm hộ mình mà. Mình đang cần gấp.😥

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)

13 tháng 4 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

3 tháng 5 2021

Thiếu câu d nha bn