Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D F
Xét \(\Delta ABF\)có:
\(CD//BF\left(gt\right)\)
\(D\varepsilon AB;E\varepsilon AF\)
\(\Rightarrow\frac{AC}{AF}=\frac{AD}{AB}\)(Định lý Ta-let)
\(\Rightarrow AC.AB=AF.AD\)
mà \(AB=AC\)(vì \(\Delta ABC\)cân tại A)
\(\Rightarrow AC^2=AF.AD\)(1)
Vì \(BE\perp AC\)(gt) \(\Rightarrow\Delta AEB\)vuông tại E
Vì \(CD\perp AB\)(gt) \(\Rightarrow\Delta ACD\)vuông tại D
Xét \(\Delta AEB\)vuông tại E và \(\Delta ACD\)vuông tại D có
\(\widehat{BAC}\)chung
\(AB=AC\)(cmt)
\(\Rightarrow\Delta AEB=\Delta ADB\)(TH: cạnh huyền,góc nhọn)
\(\Rightarrow AE=AD\)(2 cạnh tương ứng) (2)
Từ (1) và (2) đpcm
Đây là cách giải của mình ạ
18. a) Dễ cm : AE = AF
+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)
\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)
b) Qua C kẻ đg thẳng // với AD cắt AB tại I
+ AD là đg TB của ΔBCI
=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)
+ CI // AD => CI ⊥ BC
+ ΔBCI vuông tại C, đg cao CF
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
bài cuối tương tự câu a) bài trên
16. Qua B kẻ đg thẳng // với AC cắt CD tại I
Gọi BH là chiều cao của hình thang ABCD
+ BI // AC => BI ⊥ BD
+ Tứ giác ABIC là hbh => AB = CI
=> AB + CD = CD + CI = DI
+ ΔBDH vuông tại H
\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )
+ ΔBDI vuông tại B, đg cao BH
\(\Rightarrow BD^2=DH\cdot DI\)
\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )
=> Độ dài đg TB của hình thang ABCD là :
\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )
a) ta có: \(OD=OE=OA=\frac{1}{2}AE\)( bán kính đường tròn)
mà \(D\in\left(O;R\right)\)( giả thiết \(AH\)cắt \(\left(O;R\right)\)tại \(D\))
xét \(\Delta ADE\) có \(OD\) \(=\frac{1}{2}AE\)
\(\Rightarrow OD\) là đường trung tuyến ứng với cạnh \(AE\)
\(\Rightarrow\Delta ADE\) là \(\Delta\)vuông tại \(D\)
\(\Rightarrow AE\) là cạnh huyền trong tam giác vuông
ta cũng có \(O\)nằm giữa \(A,E\)( tâm đường tròn )
\(\Rightarrow A,O,E\) thẳng hàng
2: Xét ΔCAD và ΔCEA có
góc C chung
góc CAD=góc CEA
=>ΔCAD đồng dạng với ΔCEA
=>CA/CE=CD/CA
=>CA^2=CE*CD