Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M N 1 2 I K
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )
a, xét tam giác AHC và tam giác AHC có: AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC = 90
=> tam giác AHC = tam giác AHC (ch-cgv)
b, tam giác AHC = tam giác AHC (câu a)
=> CH = BH (đn)
xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)
HN = HM (gt)
=> tam giác BHN = tam giác CHM (c-g-c)
=> góc BNH = góc HMC (đn) mà 2 góc này slt
=> BN // AC (đl)
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H
A B C H M N
a) Vì AB = AC =10cm => (đpcm)
b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;
AB = AC(gt)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)
\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)
c) HM với HN?
Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ (1);(2) =>\(\Delta HMB=\Delta HNC\)
e)Xét \(\Delta AHC\)vuông:
Áp dụng định lí Py ta go ta có:
\(AC^2=CH^2+AH^2\)
\(12^2=6^2+AH^2\)
\(\Rightarrow AH^2=12^2-6^2=144-36=108\)
\(\Rightarrow AH=\sqrt{108}cm\)
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
c) vì tam giác AMN cân A
=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A
=> ABC=ACB=(180-BAC)/2
=> AMN=ABC mà AMN đồng vị với ABC=> MN//BC