K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) cân 

nghĩ zậy!!!!!!

6547

10 tháng 2 2021

ồ giở hơi như ma chơihehebanhleuleu

6 tháng 5 2016

A E B C D K I M N O

a. xét tm giác AMD và tgiac BMD có

MD là cạnh chung

góc BMD= góc AMD=90

AM=BM(gt)

vậy tgiac AMD=tgiac BMD(c.g.c)

=> BD=AD(2 cạnh tương ứng)

vậy tgiacs DAB là tgiacs cân

tương tự ta có tgiac CNS= tgiac ANE(c.g.c)

=> CE=AE(2 cạnh tương ứng)

vậy tgiacs EAC cân tại E

 

6 tháng 5 2016

trả lời hộ mình phần b,c

đừng xem chùa T_T

ủng hộ tôi bằng cách liike ik mờ

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △ABD và △ACE

Có: AB = AC (cmt)

    ABD = ACE (cmt)

       BD = CE(gt)

=> △ABD = △ACE (c.g.c)

b, Xét △AHD vuông tại H và △AIE vuông tại I

Có: AD = AE (△ABD = △ACE)

    HAD = IAE (△ABD = △ACE)

=>  △AHD = △AIE (ch-gn)

=> HD = IE (2 cạnh tương ứng)

c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2       (1)

Vì △ABC cân tại A => ABC = (180o - BAC) : 2         (2)

Từ (1) và (2)  => AHI = ABC

Mà 2 góc này nằm ở vị trí đồng vị 

=> HI // BC (dhnb)

d, Gọi { O } = HD 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: O nằm trên trung trực của AB,AC

=>OA=OB và OA=OC

=>OB=OC

mà AB=AC

nên AO là trung trực của BC

b: D nằm trên trung trực của AB

=>DA=DB

=>góc DAB=góc DBA

E nằm trên trung trực của AC

=>EA=EC

=>góc EAC=góc ECA=góc DBA=góc DAB

Xét ΔDAB và ΔEAC có

góc DAB=góc EAC

AB=AC

góc B=góc C

=>ΔDAB=ΔEAC

=>BD=CE

c: Xét ΔOBD và ΔOCE có

OB=OC

góc OBD=góc OCE

BD=CE

=>ΔOBD=ΔOCE

=>OD=OE