K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

3 tháng 5 2021

Thiếu câu d nha bn

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0

Cho tam giác ABC cân tại A , có M là chung điểm của BC

a) CM :Tam Giác ABM = Tam giác ACM

b)Từ M kẻ ME vuông góc AB ;MF vuông góc AC (E thuộc AB ,F thuộc AC) .CM Tam giác AEM =Tam giác AFM

c)CM AM vuông góc EF

d) Trên tia MF lấy điểm I sao cho IM =FM . CM EI // AM

Giúp minh với ! minh h cho

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)
AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là phân giác

nên AM là đường cao

c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có

AM chung

\(\widehat{MAD}=\widehat{MAE}\)

Do đó: ΔAMD=ΔAME

Suy ra: AD=AE

23 tháng 4 2018

a)Xét tgiac ABM và tgiac ACM,ta cí:

AB=AC(vì tgiac ABC cân tại A)

MC=MB(giả thiết)

AM là cạnh chung

=>tgiac ABM = tgiac ACM(c.c.c)

12 tháng 5 2017

a) Xét tam giác ABM va tam giác ACM

             Ta có: AB=AC(gt)

              Góc B= góc C(gt)

               MB=MC(Vì M là trung điểm của BC)

      Vậy tam giác ABM=tam giác ACM(c.g.c)

b) Xét  tam giác EBM và tam giác ECM

            Ta có: góc BEM = góc CFM=90 độ

                      góc B =góc C(gt)

                      BM=CM(gt)

         Vậy tam giác EBM= tam giác ECM(ch-gn ) 

=>BE=CE (2 cạnh tương ứng)

Ta có AE=AB-EB

         AF=AC-FC

  Mà AB=AC

       EB=FC(cmt)

=>AE=AF

    Xét tam giác AEM và tam giác AFM

      AE=AF(cmt)

góc AEM= góc AFM=900

     AM:Cạnh chung

Vây tam giác AEM= tam giác AFM(ch-cgv)

c) Gọi {T}=AM giao nhau với EF

Xét tam giác AET và tam giác AFT

          AE=AF(cmt)

        góc EAT= góc AFT( vì tam giác AEM=tam giác AFM) 
        AT: cạnh chung 

Vậy tam giác AET =tam giác AFT (c.g.c)  

=>góc ATE = góc AFT(2 góc tương ứng)

mà góc ATE + góc AFT= 1800

=> GÓC ATE =GÓC AFT= 900

Vậy AM vuông góc với EF

NẾU ĐÚG THÌ CHO MÌNH NHA 

             

                            

3 tháng 5 2021

Thiếu câu d