K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

9 tháng 2 2017

Kẻ đường thẳng qua C và song song vs DC tại F là sao? đã đi qua c sao lại // với DC?

cô mình giao đề thế mà

31 tháng 1 2021

A B C E F K

a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)

mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )

Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )

TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)

=> \(\Delta EBK\)cân tại E

b , Đề bài thiếu :>

15 tháng 6 2016

Bài này ta chủ yếu chứng minh các tam giác bằng nhau.

?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [C, E] ?o?n th?ng l: ?o?n th?ng [D, E] ?o?n th?ng n: ?o?n th?ng [D, F] ?o?n th?ng p: ?o?n th?ng [D, C] ?o?n th?ng q: ?o?n th?ng [F, E] B = (-0.13, -0.74) B = (-0.13, -0.74) B = (-0.13, -0.74) C = (7.88, -0.74) C = (7.88, -0.74) C = (7.88, -0.74) ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m E: ?i?m tr�n j ?i?m E: ?i?m tr�n j ?i?m E: ?i?m tr�n j ?i?m M: Giao ?i?m c?a f, l ?i?m M: Giao ?i?m c?a f, l ?i?m M: Giao ?i?m c?a f, l ?i?m F: Giao ?i?m c?a m, f ?i?m F: Giao ?i?m c?a m, f ?i?m F: Giao ?i?m c?a m, f

a. Xét tam giác BDF cân do có : góc DBF = ACB(Tam giác ABC cân) = DFB (Đồng vị)

b. Xét tam giác FMD và tam giác CME có:

Góc FDM =góc MEC(so le trong)

góc DFM = góc MCE (So le trong)

DF = CE(=DB)

\(\Rightarrow\Delta FMD=\Delta CME\left(g-c-g\right)\Rightarrow MD=ME\) (Hai cạnh tương ứng)

c. Ta có \(\Delta DCM=\Delta EFM\left(c-g-c\right)\Rightarrow DC=EF\)

26 tháng 4 2020

OC CHO BA LA GU

DU MA