Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M N F 1 2 1 2 3 1
Gọi E là trung điểm của MN. F là giao điểm của ND với AB.
Ta có: DF là phân giác ^ADB, DM là phân giác ^BDC. Mà ^ADB và ^BDC kề bù
=> DF vuông góc với DM => DM vuông góc với DN => Tam giác MDN vuông tại D
DE là trung tuyến của tam giác MDN => DE=ME=NE
=> Tam giác DEM cân tại E => ^EDM=^EMD (1)
^EMD là góc ngoài của tam giác BDM => ^EMD=^D1+^B2. Mà ^D1=^D2 => ^EMD=^D2+^B2 (2)
^EDM=^D2+^D3 (3)
Từ (1); (2) và (3) => ^D2+^B2=^D2+^D3 => ^B2=^D3.
Tam giác ABC cân tại A => ^ABC=^ACB => 1/2^ABC=1/2^ACB => ^B1=^B2=1/2^ACB
=> ^B1=^D3=1/2^ACB (Vì ^B2=^D3)
^DCB là góc ngoài của tam giác CDE => ^DCB=^D3+^E1. Mà ^D3=1/2^ACB=1/2^DCB
=> ^DCB=1/2^DCB+^E1 => ^E1=1/2^DCB hay ^E1=1/2^ACB
Ta thấy: ^B2=1/2^ACB; ^E1=1/2^ACB => ^B2=^E1 => Tam giác BDE cân tại D => BD=DE.
Lại có: DE=1/2MN => BD=1/2MN (đpcm)
~~~~~~~~~~~~ Ai ngang qua nhớ để lại ~~~~~~~~~~
tui cũng hỏi bài này
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à