Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình
a) xét tam giác BEC và tam giác CDB có
BC chung
BEC=CDB(=90 độ)
ABC=ACB( tam giác ABC cân A)
=> tam giác BEC= tam giác CDB(ch-gnh)
=> BD=CE( hai cạnh tương ứng)
b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)
=> tam giác HBC cân H
c) đặt O là giao điểm của AH với BC
vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)
vì HBC cân H=> HB=HC
xét tam giác HOB và tam giác HOC có
HB=HC(cmt)
HBO=HCO(cmt)
HOB=HOC(=90 độ)
=> tam giác HOB= tam giác HOC(ch-gnh)
=> BO=CO( hai cạnh tương ứng)
=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK(cgc)
=> CBD=CKD( hai cạnh tương ứng)
mà CBD=BCE=> CKD=BCE
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
a. xét tam giác ABD và tam giác ACE có
BDA=CEA=90 độ
AB=AC (do tam giác ABC cân tai A)
Chung góc A
Suy ra: tam giác ABD= tam giác ACE
Suy ra: BD=CE (hai cạnh tương ứng)
A B C D E H I K
a) Xét tam giác ABD và tam giác ACE
BDA = CEA = 90 độ
AB = AC
chung góc A
=>.Tam giác ABD = Tam giác ACE(ch-gn)
=> BD = CE (2 cạnh tương ứng)
b)=> AD = AE ( 2 cạnh tương ứng)
Mà AB = AC
=> BE = CD
Xét tam giác EBC và tam giác DBC:
BE = CD
BD = CE
BC chung
=>Tam giác EBC = Tam giác DBC (c-c-c)
=>BH = CH(2 cạnh tương ứng)
=>Tam giác BHC cân
c)BE,CD là các đường cao của tam giác ABC
Mà BE và CD cắt nhau ở H
=> AH là đường cao của tam giác ABC
Gọi I là giao điểm của AH và BC
Xét tam giác BAH và tam giác CAH
AIB = AIC = 90 độ
AB = AC
AI chung
=>Tam giác BAH = Tam giác CAH (ch-cgv)
=>BI = CI ( 2 cạnh tương ứng)
Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC
=> AI là đường trung trực của BC
=>AH là đường trung trực của BC
d)DKC + CDK + KCD =180 độ
DKC = 90 độ - KCD
ECB + BEC + CBE = 180 độ
BEC =90 độ - CBE
Mà EBC = DCB
=> ECB > DCK
=>90 độ - ECB < 90 độ - DCK
=>ECB < DKC
a) Xét tam giác ABD và tam giác ACE BDA = CEA = 90 độ AB = AC chung góc A =>.Tam giác ABD = Tam giác ACE(ch-gn) => BD = CE (2 cạnh tương ứng) b)=> AD = AE ( 2 cạnh tương ứng) Mà AB = AC => BE = CD Xét tam giác EBC và tam giác DBC: BE = CD BD = CE BC chung =>Tam giác EBC = Tam giác DBC (c-c-c) =>BH = CH(2 cạnh tương ứng) =>Tam giác BHC cân c)BE,CD là các đường cao của tam giác ABC Mà BE và CD cắt nhau ở H => AH là đường cao của tam giác ABC Gọi I là giao điểm của AH và BC Xét tam giác BAH và tam giác CAH AIB = AIC = 90 độ AB = AC AI chung =>Tam giác BAH = Tam giác CAH (ch-cgv) =>BI = CI ( 2 cạnh tương ứng) Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC => AI là đường trung trực của BC =>AH là đường trung trực của BC d)DKC + CDK + KCD =180 độ DKC = 90 độ - KCD ECB + BEC + CBE = 180 độ BEC =90 độ - CBE Mà EBC = DCB => ECB > DCK =>90 độ - ECB < 90 độ - DCK =>ECB < DKC
A B C D E H 1 2 3 4
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
A B C E D H K
Xét tam giác ABD và tam giác ACE
có AB=AC (GT)
góc ADB= góc AEC = 900
góc BAC chung
suy ra tam giác ABD = tam giác ACE ( cạnh huyền-góc nhọn) (1)
suy ra BD=CE ( hai cạnh tương ứng)
b) từ (1) suy ra AD=AE mà AD+DC=AC, AE+EB=AB mà AC = AB
suy ra DC=BE
từ (1) suy ra góc ABD=góc ACE
xét tam giác EBH và tam giác DCH
có góc HEB=góc CDH =900
BE=CD (CMT)
góc ABD=góc ACE (CMT)
suy ra tam giác EBH= tam giác DCH (g.c.g)
suy ra BH=CH
suy ra tam giác BHC cân tại H
c) Xét tam giác AHB và tam giác AHC
có AH chung
AB=AC(GT)
BH=CH (CMT)
suy ra tam giác AHB = tam giác AHC ( c.c.c)
suy ra góc BAH=góc CAH
suy ra AH là phân giác của góc BAC
mà tam giác ABC cân tại A
suy ra AH là đường trung trực của BC
d)
C/m tam giác ADK=tam giác ADB ( g.c.g)
suy ra AB=AK
suy ra tam giác ABK cân tại A suy ra góc ABK = góc AKB
tam giác ABK có góc AKB = (1800 - góc A):2
tam giác ABC cân tai A suy ra góc B=góc C
suy ra góc ACB = = (1800 - góc A):2
suy ra góc ACB = góc AKB
mà góc ACB > góc ECB
suy ra góc AKC > góc ECB
A) Xét tam giác BEC và tam giác CDB có :
\(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)
\(BC\)chung
\(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )
\(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)
Vậy \(BD=CE\) ( hai canh tương ứng )
B) Xét tam giác DHC và tam giác EHC có :
\(\widehat{EBH}\) =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )
EB=DC ( theo phần a )
\(\widehat{HEB}\)=\(\widehat{CDH}\)=900
\(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)
\(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )
\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )
C) Ta có : AB =AC ( giả thiêt )
Vậy góc A cách đều hai mút B và C
Vậy AH là đường trung trực của BC
d)Xét tam giác BDC và tam giác KDC có :
DK=DB ( GT )
CD ( chung )
suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG )
Mà ta lai có góc EBC = góc BCD theo giả thiết )
\(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)
chúc bạn hok giỏi