Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN//BP và MN=BP
=>BMNP là hình bình hành
b: Xét tứ giác AKBH có
M là trung điểm của HK
M là trung điểm của AB
Do đó: AKBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AKBH là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=NH
nên MNPH là hình thang cân
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
b: Xét ΔABC có
H là trung điểm của BC
N là trung điểm của AC
DO đó: HN là đường trung bình
=>HN//AB và HN=AB/2
=>HN=AM và HN=AM
Xét tứ giác AMHN có
HN//AM
HN=AM
Do đó: AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
c: Ta có: AMHN là hình thoi
nên Hai đường chéo AH và MN cắt nhau tại trung điểm của mỗi đường
=>O là trung điểm của AH
Xét tứ giác ABHK có
HK//AB
HK=AB
DO đó: ABHK là hình bình hành
Suy ra: Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của BK