K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEBD vuông tại E và ΔFCD vuông tại F có

BD=CD

\(\widehat{B}=\widehat{C}\)

Do đó: ΔEBD=ΔFCD

Suy ra: EB=FC

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là trung trực của BC

c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

DE=DF

Do đó: ΔAED=ΔAFD

d: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

28 tháng 2 2022

ai giúp mình đi khocroi

16 tháng 1 2018

gggggggggggggggggggggggggggg

7 tháng 2 2020

a, xét tam giác DEB và tam giác DFC có : góc BED  = góc DFC = 90 

BD = DF do D là trung điểm của BC (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> tam giác DEB = tam giác DFC (ch-gn)

b, tam giác DEB = tam giác DFC (Câu a)

=> DE = DF (đn)

xét tam giác ADE và tam giác ADF có : AD chung

góc AED = tam giác AFD = 90 

=> tam giác ADE = tam giác ADF (ch-cgv)

c, tam giác ADE = tam giác ADF  (câu b)

=> góc BAD = góc CAD (đn)

AD nằm giữa AB và AC 

=> AD là phân giác của góc BAC (Đn)

7 tháng 2 2020

A B C D E F

( Hình vẽ không được chính xác lắm mong bạn thông cảm )

a) Ta có \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) ( tính chất )

Do \(D\) là trung điểm của BC

\(\Rightarrow BD=CD=\frac{BC}{2}\)

Xét \(\Delta DEB\) và \(\Delta DFC\) có :

\(\hept{\begin{cases}\widehat{DEB}=\widehat{DFC}\left(=90^o\right)\\BD=CD\left(cmt\right)\\\widehat{EBD}=\widehat{FCD}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\)\(\Delta DEB\)\(=\)\(\Delta DFC\) ( cạnh huyền - góc nhọn )

b) Do \(\Delta DEB=\Delta DFC\left(cmt\right)\)

\(\Rightarrow DE=DF\)

Xét \(\Delta AED\) và \(\Delta AFD\) có :

\(\hept{\begin{cases}\widehat{DEA}=\widehat{DFA}\left(=90^o\right)\\ADchung\\DE=DF\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta AED=\Delta AFD\) ( cạnh huyền - cạnh góc vuông )

c) Từ \(\Rightarrow\Delta AED=\Delta AFD\) (cmt)

\(\Rightarrow\widehat{EAD}=\widehat{FAD}\Rightarrow\widehat{BAD}=\widehat{CAD}\)

\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\)

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

28 tháng 2 2019

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

25 tháng 3 2022

dn là j ă bạn?

 

 

 

18 tháng 3 2020

Bài 1

a. (Tự vẽ hình)

Áp dụng định lí Py-ta-go, ta có:

BC2= AB2 + AC2

<=> BC2= 62 + 82

<=> BC2= 100

=> BC = 10 (cm)

18 tháng 3 2020

Bài 1

b. Áp dụng định lí Py-ta-go, ta có:

AC= AH2 + HC2

<=> 8= 4,82 + HC2

<=> 64 = 23,04 + HC2

=> HC= 64 - 23,04 

=> HC= 40,96

=> HC = 6,4 (cm)

=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)

Mình làm phần d) thôi nhé!

Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:

Tam giác ABI = Tam giác ACI)

mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)

=>\(\widehat{AIB}=\widehat{AIC}=90\)

Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:

\(AB^2=AI^2+BI^2\)(1)

Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:

\(AI^2=AD^2+DI^2\)(2)

Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:

\(BI^2=DI^2+BD^2\)(3)

Thay (2),(3) vào (1) ta có được:

\(AB^2=AD^2+DI^2+DI^2+BD^2\)

(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)