K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

B A C M

a) Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao

=> AM vuông góc BC tại M

b) Vì M là trung điểm BC => MB = MC = BC/2 = 3/2 = 1,5 (cm)
Xét tam giác ABM vuông tại M (cmt) có:

   AM^2 + BM^2 = AB^2 (pytago)

   AM^2 + 1,5^2 = 5^2

   AM^2 + 2,25 = 25

  AM^2             = 25 - 2,25 = 22,75

=> AM = căn của 22,75 và AM xấp xỉ 4,8 (cm)

4 tháng 3 2017

Đề thiếu yêu cầu hay là thừa dữ kiện? Thực sự cm \(AM⊥BC\)không cần đến độ dài cạnh. Cần \(\Delta\)cân và 1 đường (ở đây là trung tuyến) là đủ!

(Bạn tự vẽ hình nhé!)

Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AM\)vừa là trung tuyến vừa là đường cao \(\Rightarrow AM⊥BC\)

4 tháng 3 2018

hỏi nhiều quá ak

26 tháng 4 2020

A B C M

a) Xét t/giác ABM và t.giác ACM

có: AB = AC (gt)

AM : chung

BM = MC (gt)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM vuông góc với BC

b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

\(AB^2=AM^2+BM^2\)

=> AM2 = AB2 - BM2 = 342 - 162 = 900

=> AM = 30 (cm)

c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)

Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)

28 tháng 6 2019

11 tháng 4 2022

Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC 
b) Tính AM biết rằng AB cm BC cm   10 , 12