Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)
A B C E N M D O 1 2 1 2
Bài làm
a) Ta có tia phân giác của góc \(\widehat{ABC}\)
=> \(\widehat{B}_1=\widehat{B_2}\)
Ta có tia phân giác của góc \(\widehat{ACB}\)
=> \(\widehat{C}_1=\widehat{C_2}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)( Tam giác ABC cân tại A )
=>\(\widehat{B}_1=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)
Xét tam giác ACN và tam giác ABM có:
\(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )
AB = AC ( tam giác ABC cân tại A )
\(\widehat{BAC}\)là góc chung
=> Tam giác ACN = tam giác ABM ( g.c.g ) ( đpcm )
b) ~ Mik nghĩ đề bài bn sai ở chỗ câu b. pk là A là trung điểm của DE mới phải ~
Vì \(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )
Ta có: \(\widehat{B}_1\)đối diện với cạnh AD ( 1 )
Vì \(\widehat{C_1}\)đối diện với cạnh EA ( 2 )
Từ ( 1 ) và ( 2 ) => AD = AE
=> A là trung điểm của DE ( đpcm )
# Hok_tốt #
a)Xét ΔABM vuông và ΔACM vuông có:
AM chung
AB=AC
=> ΔABM = ΔACM
=> BAM = CAM ( 2 góc t.ư)
=> AM là p/g của góc BAC
cau con lai dau ban, hinh nua